Skip to main content

Design and Implementation of a Line Balance Visualization and Editing Tool

  • Conference paper
  • First Online:
ICoRD’15 – Research into Design Across Boundaries Volume 2

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 35))

  • 1403 Accesses

Abstract

The objective of this research is to develop a knowledge representation for managing and modifying assembly line balance information through visualization tools. Additionally, a software tool, the Line Balancing Visualization and Editing Tool (LVET), is developed that enables assembly line balancing experts to view and edit line balance knowledge. The tool is integrated with external line balancing algorithms and assembly line constraints. This knowledge representation and associated tool provide a graphical representation of workstation layout, processes assigned to workstations, and tool and time constraint information. The tool enables complex line text based results to be visualized graphically. The tool is validated by checking for consistent and correct representation of information from an algorithm generated line balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boysen, N., Fliedner, M., Scholl, A.: A classification of assembly line balancing problems. Eur. J. Oper. Res. 183(2), 674–693 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rychtyckyj, N., Klampfl, E., Rossi, G.: Application of intelligent methods to automotive assembly planning. IEEE Int. Conf. Syst. Man Cybern. 2479–2483 (2007)

    Google Scholar 

  3. Merengo, C., Nava, F., Pozzetti, A.: International Journal of Balancing and sequencing manual mixed-model assembly lines. Int. J. Prod. Res. 37(12), 2835–2860 (1999)

    Article  MATH  Google Scholar 

  4. Bukchin, J., Dar-El, E.M., Rubinovitz, J.: Mixed model assembly line design in a make-to-order environment. Comput. Ind. Eng. 41(4), 405–421 (2002)

    Article  Google Scholar 

  5. Vilarinho, P.M., Simaria, A.S.: A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations. Int. J. Prod. Res. 40(6), 1405–1420 (2002)

    Article  MATH  Google Scholar 

  6. Gerritsen, B.H.M.: IT innovations and their impact on industrial design and manufacturing. In: Proceedings of TMCE 2008 Symposium, Izmir, Turkey, pp. 63–78 (2008)

    Google Scholar 

  7. Funk, J.L.: Just-in-time manufacturing and logistical complexity: a contingency model. Int. J. Oper. Prod. Manage. 15(5), 60–71 (1995)

    Article  Google Scholar 

  8. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res. 168(3), 666–693 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Arnold, P., Rudolph, S.: Bridging the gap between product design and product manufacturing by means of graph-based design languages. In: Horvath, I., Rusak, Z., Albers, A., Behrendt, M. (eds.) Proceedings of TMCE, Karlsruhe, Germany, pp. 985–998 (2012)

    Google Scholar 

  10. Altemeier, S., Helmdach, M., Koberstein, A., Dangelmaier, W.: Reconfiguration of assembly lines under the influence of high product variety in the automotive industry—a decision support system. Int. J. Prod. 48(21), 37–41 (2010)

    Article  Google Scholar 

  11. Torenli, A.: Assembly Line Design and Optimization. Master of Science Thesis, Chalmers University of Technology, Gothenburg (2009)

    Google Scholar 

  12. Rentschler, D., Stevens, D.: Assembly Line Balancer. U.S. Pat. 5(177), 688 (1993)

    Google Scholar 

  13. Wenbin, Z., Juanqi, Y., Dengzhe, M., Ye, J., Xiumin, F.: Production engineering-oriented virtual factory: a planning cell-based approach to manufacturing systems design. Int. J. Adv. Manufact. Technol. 28(9–10), 957–965 (2006)

    Article  Google Scholar 

  14. Bowman, A.E.H., Jun, N.M., Bowman, E.H.: Assembly-line balancing by linear programming. Oper. Res. 8(3), 385–389 (1960)

    Article  MATH  Google Scholar 

  15. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gutjahr, A.L., Nemhauser, G.L.: An algorithm for line balancing problem. Manage. Sci. 11(2), 308–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hyun, C.J., Kim, Y., Kim, Y.K.: A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines. Comput. Oper. Res. 25(7–8), 675–690 (1998)

    Article  MATH  Google Scholar 

  18. Goncalves, J.F., De Almeida, J.R.: A Hybrid genetic algorithm for assembly line balancing. J. Heuristics 8, 629–642 (2002)

    Article  Google Scholar 

  19. Sabuncuoglu, I., Erel, E., Tanyer, M.: Assembly line balancing using genetic algorithms. J. Intell. Manuf. 11, 295–310 (2000)

    Google Scholar 

  20. Falknauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In: International Conference on Robotics and Automation, pp. 1186–1192 (1992)

    Google Scholar 

  21. Rubinovitz, J., Levitin, G.: Genetic algorithm for assembly line balancing. Int. J. Prod. Econ. 41(1–3), 343–354 (1995)

    Article  Google Scholar 

  22. Chiang, W.: The application of a tabu search metaheuristic to the assembly line balancing problem. Ann. Oper. Res. 77, 209–227 (1998)

    Article  MATH  Google Scholar 

  23. Vilarinho, P.M., Simaria, A.S.: ANTBAL: an ant colony optimization algorithm for balancing mixed-model assembly lines with parallel workstations. Int. J. Prod. Res. 44(2), 291–303 (2007)

    Google Scholar 

  24. Lapierre, S.D., Ruiz, A., Soriano, P.: Balancing assembly lines with tabu search. Eur. J. Oper. Res. 168(3), 826–837 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Erel, E., Sabuncuoglu, I., Aksu, B.A.: Balancing of U-type assembly systems using simulated annealing. Int. J. Prod. Res. 39(13), 3003–3015 (2001)

    Google Scholar 

  26. Mcmullen, P.R., Frazier, G.V.: Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations. Int. J. Prod. Res. 36(10), 2717–2741 (1998)

    Article  MATH  Google Scholar 

  27. Zhong, Y., Shirinzadeh, B.: Virtual factory for manufacturing process visualization. Complex. Int. 12, 1–22 (2005)

    Google Scholar 

  28. Hong, Z., Soon, T.H., Sivakumar, A.I.: Digital models for manufacturing process visualization. Proc. Int. Conf. Integr. Logistics 2, 113–122 (2001)

    Google Scholar 

  29. Fan, W., Gao, Z., Xu, W., Xiao, T.: Balancing and simulating of assembly line with overlapped and stopped operation. Simul. Model. Pract. Theory 18(8), 1069–1079 (2010)

    Article  Google Scholar 

  30. Pahl, G., Beitz, W., Feldhuesen, J., Grote, K.H.: Engineering Design: a Systematic Approach. Springer, London (2007)

    Book  Google Scholar 

  31. Pin-shan, P.: The entity-relationship unified view of data model. ACM Trans. Database Syst. 1(1), 9–36 (1976)

    Article  Google Scholar 

  32. Renu, R.S.: Decision Support Systems for Assembly Line Planning: Modular Subsystems for a Large-Scale Production Management System. Clemson University, Clemson (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Mocko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Renu, R.S., Mocko, G. (2015). Design and Implementation of a Line Balance Visualization and Editing Tool. In: Chakrabarti, A. (eds) ICoRD’15 – Research into Design Across Boundaries Volume 2. Smart Innovation, Systems and Technologies, vol 35. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2229-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2229-3_24

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2228-6

  • Online ISBN: 978-81-322-2229-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics