Screening for Plant Features

  • Gerie W. A. M. van der Heijden
  • Gerrit Polder


In this chapter, an overview of different plant features is given, from (sub)cellular to canopy level. A myriad of methods is available to measure these features using image analysis, and often, multiple methods can be used to measure the same feature. Several criteria are listed for choosing a certain (set of) image descriptor(s) to measure a plant feature. The choice is dependent on a variety of reasons, including accuracy, robustness, recording time, throughput, costs and flexibility. We conclude that hyperspectral imaging can provide a powerful set of image descriptors, which can be used to measure numerous plant features using multivariate statistical models. However, care should be taken that the estimates obtained with these statistical models provide the right measurement for the plant feature under all circumstances of interest.


Hyperspectral Imaging Principal Component Regression Total Leaf Area Image Descriptor Plant Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alimi NA, Bink MCAM, Dieleman JA, Nicolaï M, Wubs M, Heuvelink E, Magan J, Voorrips RE, Jansen J, Rodrigues PC, van der Heijden GWAM, Vercauteren A, Vuylsteke M, Odong TL, Jansen J, van Eeuwijk FA, van Hintum TJL (2013) Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190:181–201CrossRefGoogle Scholar
  2. Baldwin PM, Bertrand D, Novales B, Bouchet B, Collobert G, Gallant DJ (1997) Chemometric labeling of cereal tissues in multichannel fluorescence microscopy images using discriminant analysis. Anal Chem 69(21):4339–4348CrossRefPubMedGoogle Scholar
  3. Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132(2):485–493CrossRefPubMedCentralPubMedGoogle Scholar
  4. Barkley A, Tack J, Nalley LL, Bergtold J, Bowden R, Fritz A (2013) The impact of climate, disease, and wheat breeding on wheat variety yields in Kansas, 1985–2011. Kansas State University, ManhattanGoogle Scholar
  5. Bouman BAM, van Keulen H, van Laar HH, Rabbinge R (1996) The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agric Syst 52(2):171–198CrossRefGoogle Scholar
  6. Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX (2012) Transparent soil for imaging the rhizosphere. PLoS One 7(9):e44276CrossRefPubMedCentralPubMedGoogle Scholar
  7. Fang S, Clark R, Liao H (2012) 3D quantification of plant root architecture in situ measuring roots. Springer, New York, pp 135–148Google Scholar
  8. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291CrossRefPubMedGoogle Scholar
  9. Gao M, van der Heijden GWAM, Vos J, Eveleens BA, Marcelis LFM (2012) Estimation of leaf area for large scale phenotyping and modeling of rose genotypes. Sci Hortic 138:227–234CrossRefGoogle Scholar
  10. Gonzales RC, Woods RE (1993) Digital image processing. Addison-Wesley Publishing Company, ReadingGoogle Scholar
  11. Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang JF, Balint-Kurti P, Shyu CR (2012) PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods 8(1): 1–12CrossRefGoogle Scholar
  12. Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk FA, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11(12): 587–593CrossRefPubMedGoogle Scholar
  13. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New YorkCrossRefGoogle Scholar
  14. Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45(3):832–839CrossRefGoogle Scholar
  15. Hruska Z, Yao H, Kincaid R, Darlington D, Brown RL, Bhatnagar D, Cleveland TE (2013) Fluorescence imaging spectroscopy (fis) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus. J Food Sci 78(8):T1313–T1320CrossRefPubMedGoogle Scholar
  16. Keefe PD, Draper SR (1986) The measurement of new characters for cultivar identification in wheat using machine vision. Seed Sci Technol 14(3):715–724Google Scholar
  17. Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30(5): 601–609CrossRefPubMedGoogle Scholar
  18. Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci 46(1):456–466CrossRefGoogle Scholar
  19. Paulus S, Dupuis J, Mahlein A, Kuhlmann H (2013) Surface feature based classification of plant organs from 3D laser scanned point clouds for plant phenotyping. BMC Bioinform 14(1):238CrossRefGoogle Scholar
  20. Perry EM, Brand J, Kant S, Fitzgerald GJ (2012) Field-based rapid phenotyping with unmanned aerial vehicles (UAV). In: Yunusa I (ed) Proceedings of 16th Australian Agronomy conference 2012, Capturing opportunities and overcoming obstacles in Australian agronomy (Precision agriculture:), Armidale, 14–18 Oct 2012Google Scholar
  21. Pieruschka R, Poorter H (2012) Phenotyping plants: genes, phenes and machines. Funct Plant Biol 39(11): 813–820CrossRefGoogle Scholar
  22. Polder G, van der Heijden GWAM, van der Voet H, Young IT (2004) Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biol Technol 34(2):117–129CrossRefGoogle Scholar
  23. Polder G, van der Heijden GWAM, van Doorn J, Clevers JGPW, van der Schoor R, Baltissen AHMC (2010) Detection of the tulip breaking virus (TBV) in tulips using optical sensors. Precis Agric 11(4):397–412CrossRefGoogle Scholar
  24. Polder G, van der Heijden GW, van Doorn J, Baltissen TAHMC (2013) Advances in automatic detection of tulip breaking virus (TBV) using machine vision. Agricontrol 4:58–63Google Scholar
  25. Rorie RL, Purcell LC, Mozaffari M, Karcher DE, King CA, Marsh MC, Longer DE (2011) Association of greenness in corn with yield and leaf nitrogen concentration. Agron J 103(2):529–535CrossRefGoogle Scholar
  26. Schut AGT, van der Heijden GWAM, Hoving I, Stienezen MWJ, van Evert FK, Meuleman J (2006) Imaging spectroscopy for on-farm measurement of grassland yield and quality. Agron J 98(5):1318–1325CrossRefGoogle Scholar
  27. van der Heijden GWAM (1995) Applications of image analysis in plant variety testing. PhD thesis, Delft University of TechnologyGoogle Scholar
  28. van der Heijden GWAM, Vossepoel AM, Polder G (1996) Measuring onion cultivars with image analysis using inflection points. Euphytica 87(1):19–31CrossRefGoogle Scholar
  29. van der Heijden GWAM, de Visser PHB, Heuvelink E (2007) Measurements for functional-structural plant models. In: Vos J, Marecelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional-structural plant modelling in crop production. Springer, BerlinGoogle Scholar
  30. van der Heijden GWAM, Song Y, Horgan G, Polder G, Dieleman AM, Bink MCAM, Palloix A, van Eeuwijk FA, Glasbey C (2012) SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct Plant Biol 39:870–877CrossRefGoogle Scholar
  31. van Otterloo PJ (1991) A contour-oriented approach to shape analysis. Prentice Hall International (UK) Ltd, HertfordshireGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gerie W. A. M. van der Heijden
    • 1
    • 2
  • Gerrit Polder
    • 2
  1. 1.Dupont PioneerJohnstonUSA
  2. 2.Wageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations