Role of Fluorescence Approaches to Understand Functional Traits of Photosynthesis



Chlorophyll a fluorescence is a fast, non-invasive, non-destructive tool. Plant responses of the photosynthetic apparatus of leaves and plants can be measured in real time using digital imaging, and this gives the opportunity through analysis of the data to understand more about the growth and developmental processes of plants as they adapt and respond to the changes in the environment. Chlorophyll a fluorescence fulfils the criteria to be used in high-throughput (HTP) screening, as long as fundamental rules are being taken care of like good plant preparation and proper use of measuring protocols. Four parameters derived from fluorescence measurements that can be used for HTP screening of plants are being discussed because these parameters can be used as functional traits of photosynthesis. Selecting plants on these properties will offer possibilities in improving the crop yield at field conditions and in greenhouses.


Reaction Centre Photosynthetic Rate Chlorophyll Fluorescence Photosynthetic Photon Flux Density Functional Trait 


  1. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113CrossRefPubMedGoogle Scholar
  2. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621CrossRefPubMedGoogle Scholar
  3. Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30:1107–1125CrossRefPubMedGoogle Scholar
  4. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photo protection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185CrossRefPubMedGoogle Scholar
  5. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origin. Planta 170:489–504CrossRefPubMedGoogle Scholar
  6. Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378CrossRefGoogle Scholar
  7. Chaerle L, van der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166CrossRefPubMedGoogle Scholar
  8. Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll fluorescence performance index. Environ Pollut 109:501–507CrossRefPubMedGoogle Scholar
  9. D’Haese D, Vandermeiren K, Caubergs RJ, Guiseza Y, De Temmerman L, Horemans N (2004) Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. J Theor Biol 227:175–186CrossRefPubMedGoogle Scholar
  10. Duysens LNM, Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. Studies on microalgae and photosynthetic bacteria. Jpn Soc Plant Physiol. University of Tokyo Press, Tokyo, Japan, pp 353–372Google Scholar
  11. Earl HJ, Ennahli S (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without photosystem II light saturation. Photosynth Res 82:177–186CrossRefPubMedGoogle Scholar
  12. Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102CrossRefPubMedGoogle Scholar
  13. Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90CrossRefPubMedCentralPubMedGoogle Scholar
  14. Franck F, Juneau P, Popovic R (2002) Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 1556:239–246CrossRefPubMedGoogle Scholar
  15. Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580CrossRefPubMedCentralPubMedGoogle Scholar
  16. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  17. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160CrossRefGoogle Scholar
  18. Groom QJ, Baker NR (1992) Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiol 100:1217–1223CrossRefPubMedCentralPubMedGoogle Scholar
  19. Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034CrossRefPubMedCentralPubMedGoogle Scholar
  20. Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24:1921–1935CrossRefPubMedCentralPubMedGoogle Scholar
  21. Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, de Jaeger I, Metzlaff M, Schurr U, Scharr H, Walter A (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914CrossRefGoogle Scholar
  22. Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäure assimilation. Naturwissenschaften 19:964CrossRefGoogle Scholar
  23. Koblizek M, Ciscato M, Komenda J, Kopecky J, Siffel P, Masojidek J (1999) Photoadaptation in the green alga Spongiochloris sp. – a three-fluorometer study. Photosynthetica 37:307–323CrossRefGoogle Scholar
  24. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  25. Loriaux SD, Avenson TJ, Welles JM, McDermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 10:1755–1770CrossRefGoogle Scholar
  26. Markgraf T, Berry J (1990) Measurement of photochemical and non-photochemical quenching: correction for turnover of PSII during steady-state photosynthesis. Curr Res Photosynth 4:279–282Google Scholar
  27. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  28. McAlister ED, Myers J (1940) The time-course of photosynthesis and fluorescence observed simultaneously. Smithson Inst Misc Collect 99:1–37Google Scholar
  29. Misra AN, Misra M, Singh R (2012) Chlorophyll fluorescence in plant biology, biophysics. In: In Tech, Misra AN (eds). Available from:
  30. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566CrossRefPubMedCentralPubMedGoogle Scholar
  31. Murchie EH, Niyogi KK (2011) Manipulation of photo protection to improve plant photosynthesis. Plant Physiol 155:86–92CrossRefPubMedCentralPubMedGoogle Scholar
  32. Murchie EH, Pinto M, Horton P (2008) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552CrossRefPubMedGoogle Scholar
  33. Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R (2012) Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS One 7(11):e49839. doi: 10.1371/journal.pone.0049839 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Ögren E (1990) Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. Plant Physiol 93:1280–1285CrossRefPubMedCentralPubMedGoogle Scholar
  35. Pfündel EE (2009) Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of Fv/Fm on excitation wavelength. Photosynth Res 100:163–177CrossRefPubMedGoogle Scholar
  36. Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486CrossRefGoogle Scholar
  37. Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley, New York, p 273Google Scholar
  38. Ralph PJ, Macinnis-Ng CMO, Frankart C (2005) Fluorescence imaging application: effect of leaf age on seagrass photokinetics. Aquat Bot 81:69–84CrossRefGoogle Scholar
  39. Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405CrossRefGoogle Scholar
  40. Rock CD, Bowlby NR, Hoffmann-Benning S, Zeevaart JAD (1992) The aba mutant of Arabidopsis thaliana (L.) Heynh. has reduced chlorophyll fluorescence yields and reduced thylakoid stacking. Plant Physiol 100:1796–1801CrossRefPubMedCentralPubMedGoogle Scholar
  41. Rohacek K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363CrossRefGoogle Scholar
  42. Röttgers R (2007) Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton. Deep-Sea Res I 54:437–451CrossRefGoogle Scholar
  43. Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, Guillaumès J, Manceau C, Jacques MA, Boureau T (2013) High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17CrossRefPubMedCentralPubMedGoogle Scholar
  44. Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261CrossRefPubMedGoogle Scholar
  45. Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043CrossRefPubMedGoogle Scholar
  46. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62CrossRefPubMedGoogle Scholar
  47. Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144CrossRefPubMedCentralPubMedGoogle Scholar
  48. Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ 29:340–352CrossRefPubMedGoogle Scholar
  49. Seaton GGR, Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond B Biol Sci 242:29–35CrossRefGoogle Scholar
  50. Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2012) Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Funct Plant Biol 39:936–947CrossRefGoogle Scholar
  51. Shavnin S, Maurer S, Matyssek R, Bilger W, Scheidegger C (1999) The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula). Trees 14:10–16CrossRefGoogle Scholar
  52. Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129CrossRefGoogle Scholar
  53. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480Google Scholar
  54. Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384CrossRefGoogle Scholar
  55. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697CrossRefPubMedGoogle Scholar
  56. Tóth SZ (2006) Analysis and application of the fast Chl a fluorescence (OJIP) transient complemented with simultaneous 820 nm transmission measurements. Thesis No 3741 fromuniversité de Genevefaculté des sciences département de botanique et biologievégétalelaboratoire de bioénergétique et microbiologie, R.J. StrasserGoogle Scholar
  57. Vredenberg WJ, van Rensen JJS, Rodrigues GC (2006) On the sub-maximal yield and photo-electric stimulation of chlorophyll a fluorescence in single turnover excitations in plant cells. Bioelectrochemistry 68:81–88CrossRefPubMedGoogle Scholar
  58. Walker D, Sivak MN, Prinsley RT, Cheesbrough JK (1983) Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces. Plant Physiol 73:542–549CrossRefPubMedCentralPubMedGoogle Scholar
  59. Warburg O (1920) Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebendenZellen. II. Biochem Z 103:188–217Google Scholar
  60. Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Wageningen CampusGreenhouse HorticultureWageningenThe Netherlands

Personalised recommendations