Skip to main content

Role of Fluorescence Approaches to Understand Functional Traits of Photosynthesis

  • Chapter
  • First Online:
Phenomics in Crop Plants: Trends, Options and Limitations

Abstract

Chlorophyll a fluorescence is a fast, non-invasive, non-destructive tool. Plant responses of the photosynthetic apparatus of leaves and plants can be measured in real time using digital imaging, and this gives the opportunity through analysis of the data to understand more about the growth and developmental processes of plants as they adapt and respond to the changes in the environment. Chlorophyll a fluorescence fulfils the criteria to be used in high-throughput (HTP) screening, as long as fundamental rules are being taken care of like good plant preparation and proper use of measuring protocols. Four parameters derived from fluorescence measurements that can be used for HTP screening of plants are being discussed because these parameters can be used as functional traits of photosynthesis. Selecting plants on these properties will offer possibilities in improving the crop yield at field conditions and in greenhouses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30:1107–1125

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photo protection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origin. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    Article  CAS  Google Scholar 

  • Chaerle L, van der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll fluorescence performance index. Environ Pollut 109:501–507

    Article  CAS  PubMed  Google Scholar 

  • D’Haese D, Vandermeiren K, Caubergs RJ, Guiseza Y, De Temmerman L, Horemans N (2004) Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. J Theor Biol 227:175–186

    Article  PubMed  Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. Studies on microalgae and photosynthetic bacteria. Jpn Soc Plant Physiol. University of Tokyo Press, Tokyo, Japan, pp 353–372

    Google Scholar 

  • Earl HJ, Ennahli S (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without photosystem II light saturation. Photosynth Res 82:177–186

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 1556:239–246

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Groom QJ, Baker NR (1992) Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiol 100:1217–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24:1921–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, de Jaeger I, Metzlaff M, Schurr U, Scharr H, Walter A (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914

    Article  CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäure assimilation. Naturwissenschaften 19:964

    Article  CAS  Google Scholar 

  • Koblizek M, Ciscato M, Komenda J, Kopecky J, Siffel P, Masojidek J (1999) Photoadaptation in the green alga Spongiochloris sp. – a three-fluorometer study. Photosynthetica 37:307–323

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Loriaux SD, Avenson TJ, Welles JM, McDermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 10:1755–1770

    Article  Google Scholar 

  • Markgraf T, Berry J (1990) Measurement of photochemical and non-photochemical quenching: correction for turnover of PSII during steady-state photosynthesis. Curr Res Photosynth 4:279–282

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • McAlister ED, Myers J (1940) The time-course of photosynthesis and fluorescence observed simultaneously. Smithson Inst Misc Collect 99:1–37

    Google Scholar 

  • Misra AN, Misra M, Singh R (2012) Chlorophyll fluorescence in plant biology, biophysics. In: In Tech, Misra AN (eds). Available from: http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photo protection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2008) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    Article  PubMed  Google Scholar 

  • Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R (2012) Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS One 7(11):e49839. doi:10.1371/journal.pone.0049839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ögren E (1990) Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. Plant Physiol 93:1280–1285

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfündel EE (2009) Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of Fv/Fm on excitation wavelength. Photosynth Res 100:163–177

    Article  PubMed  Google Scholar 

  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486

    Article  CAS  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley, New York, p 273

    Google Scholar 

  • Ralph PJ, Macinnis-Ng CMO, Frankart C (2005) Fluorescence imaging application: effect of leaf age on seagrass photokinetics. Aquat Bot 81:69–84

    Article  Google Scholar 

  • Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405

    Article  CAS  Google Scholar 

  • Rock CD, Bowlby NR, Hoffmann-Benning S, Zeevaart JAD (1992) The aba mutant of Arabidopsis thaliana (L.) Heynh. has reduced chlorophyll fluorescence yields and reduced thylakoid stacking. Plant Physiol 100:1796–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohacek K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363

    Article  CAS  Google Scholar 

  • Röttgers R (2007) Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton. Deep-Sea Res I 54:437–451

    Article  Google Scholar 

  • Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, Guillaumès J, Manceau C, Jacques MA, Boureau T (2013) High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ 29:340–352

    Article  CAS  PubMed  Google Scholar 

  • Seaton GGR, Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond B Biol Sci 242:29–35

    Article  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2012) Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Funct Plant Biol 39:936–947

    Article  CAS  Google Scholar 

  • Shavnin S, Maurer S, Matyssek R, Bilger W, Scheidegger C (1999) The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula). Trees 14:10–16

    Article  Google Scholar 

  • Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384

    Article  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Tóth SZ (2006) Analysis and application of the fast Chl a fluorescence (OJIP) transient complemented with simultaneous 820 nm transmission measurements. Thesis No 3741 fromuniversité de Genevefaculté des sciences département de botanique et biologievégétalelaboratoire de bioénergétique et microbiologie, R.J. Strasser

    Google Scholar 

  • Vredenberg WJ, van Rensen JJS, Rodrigues GC (2006) On the sub-maximal yield and photo-electric stimulation of chlorophyll a fluorescence in single turnover excitations in plant cells. Bioelectrochemistry 68:81–88

    Article  CAS  PubMed  Google Scholar 

  • Walker D, Sivak MN, Prinsley RT, Cheesbrough JK (1983) Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces. Plant Physiol 73:542–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warburg O (1920) Ãœber die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebendenZellen. II. Biochem Z 103:188–217

    CAS  Google Scholar 

  • Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Jalink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Jalink, H., van der Schoor, R. (2015). Role of Fluorescence Approaches to Understand Functional Traits of Photosynthesis. In: Kumar, J., Pratap, A., Kumar, S. (eds) Phenomics in Crop Plants: Trends, Options and Limitations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2226-2_12

Download citation

Publish with us

Policies and ethics