Skip to main content

Advances in Phenotyping of Functional Traits

  • Chapter
  • First Online:
Phenomics in Crop Plants: Trends, Options and Limitations

Abstract

Phenotyping is analyzing a plant’s phenotype and providing a critical means to understand morphological, biochemical, and physiological principles in the control of basic plant functions as well as to select superior genotypes in plant breeding. Besides well-known classical plant phenotyping procedures based on visual observations, measurements, or biochemical analyses, many recent developments are target specific and highly automated analysis procedures. Automated phenotyping approaches are far more successful at the laboratory and greenhouse scale than in field conditions where many other variable factors complicate the retrieval of imaging data collected in the field. With respect to plant breeding, rapid measurement procedures, a high throughput, a high degree of automation, and an access to appropriate, well-conceived databases are required to depict the performance of certain genotypes in the field. This chapter will focus on destructive, nondestructive, and automated techniques available to quantify plant morphological and biomass traits, root system architecture, physiological functional traits, biochemical quality and nutritional compositions, and postharvest characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a probe of photosynthesis. Springer, Dordrecht, pp 583–604

    Chapter  Google Scholar 

  • Aiken RM (1992) Functional relations of root distributions with the flux and uptake of water and nitrate. Dissertation, Michigan State University

    Google Scholar 

  • Albus J, Bostelman R, Dagalakis N (1993) NIST robocrane. J Robot Syst 10:709–724

    Article  Google Scholar 

  • Andrade-Sanchez P, Heun JT, Gore MA, French AN, Carmo-Silva E, Salvucci ME (2012) Use of a moving platform for field deployment of plant sensors. In: Proceedings of the 2012 ASABE Annual International Meeting, Dallas, TX

    Google Scholar 

  • Armstrong PR, Maghirang EB, Xie EB, Dowell FE (2006) Comparison of dispersive and fourier-transform NIR instruments for measuring grain and flour attributes. Appl Eng Agric 22:453–457

    Article  Google Scholar 

  • Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B (2011) A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol 191:895–907

    Article  PubMed  Google Scholar 

  • Baianu IC, You T, Costescu DM, Lozano PR, Prisecaru V, Nelson RL (2012) Nature proceedings. doi:10.1038/npre.2012.7053.1

  • Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    Article  CAS  Google Scholar 

  • Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE T Geosci Remote 47:722–738

    Article  Google Scholar 

  • Biskup B, Scharr H, Schurr U, Rascher U (2007) A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ 30:1299–1308

    Article  PubMed  Google Scholar 

  • Boldor D, Sanders TH, Swartzel KR, Simunovic J (2002) Computer-assisted color classification of peanut pods. Peanut Sci 29:41–46

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin KD, Melouk HA, Madden R, Dillwith JW, Bannore Y, El Rassi Z, Payton M (2011) Determining the oleic/linoleic acid ratio in a single peanut seed: a comparison of two methods. Peanut Sci 38:78–84

    Article  Google Scholar 

  • Colaizzi PD, Barnes EM, Clarke TR, Choi CY, Waller PM, Haberland J, Kostrzewski M (2003) Water stress detection under high frequency sprinkler irrigation with water deficit index. J Irrig Drain E-ASCE 129:36–43

    Article  Google Scholar 

  • Colvin BC, Rowland DL, Faircloth WH, Ferrell JA (2013) Assessment of a digital imaging system for determining peanut maturity: plot and on-farm trials. 2012 Proceedings of the American Peanut Research Education Society, Raleigh, NC

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  CAS  Google Scholar 

  • Davidson JI, Whitaker JA, Dickens JW (1982) Grading, cleaning, storage, shelling, and marketing of peanuts in the United States. In: Pattee, Young (eds) Peanut science and technology. American Peanut Research and Education Society, Yoakum, TX

    Google Scholar 

  • De Wolf J, Duchateau L, Schrevens E (2008) Dealing with sources of variability in the data-analysis of phenotyping experiments with transgenic rice. Euphytica 160:325–337

    Article  Google Scholar 

  • Dean LL, Hendrix KW, Davis JP, Sanders TH, Klevorn CM (2013) Development of lipid components of high- and normal-oleic peanuts. 2013 Proceedings of the American Peanut Research Education Society Annual Meeting, Young Harris, GA

    Google Scholar 

  • Dowell FE, Maghirang EB, Jayaraman V (2009) Technical note: measuring grain and insect characteristics using NIR laser array technology. Appl Eng Agric 26:165–169

    Article  Google Scholar 

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency in wheat genotypes. Aust J Plant Physiol 11:539–552

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Filella I, Serrano I, Serra J, Penuelas J (1995) Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci 35:1400–1405

    Article  Google Scholar 

  • Fitter A (2002) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi L (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker Inc, New York

    Google Scholar 

  • French AN, Hunsaker DJ, Clarke TR, Fitzgerald GJ, Luckett WE, Pinter PJ Jr (2007) Energy balance estimation of evapotranspiration for wheat grown under variable management practices in central Arizona. Trans ASABE 50:2059–2071

    Article  Google Scholar 

  • Galmes J, Ribas-Carbo M, Medrano H, Flexas J (2011) Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J Exp Bot 62:653–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao BC (1996) NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  • Gärtner H, Denier C (2006) Application of a 3D laser scanning device to acquire the structure of whole root systems- a pilot study. In: Heinrich I, Gärtner H, Monbaron M, Schleser G (eds) TRACE – tree rings in archaeology. Climatology and ecology, vol 4., pp 288–294

    Google Scholar 

  • Gartner H, Wagner B, Heinrich I, Denier C (2009) 3D-laser scanning: a new method to analyze coarse tree root systems. For Snow Landsc Res 82:95–106

    Google Scholar 

  • Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74:38–45

    Article  CAS  PubMed  Google Scholar 

  • Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu L, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, Tardieu F (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    Article  PubMed  Google Scholar 

  • Grimm CC, Champagne ET, Sanders TH (1998) Determination of peanut maturity using a hunter colorimeter. Peanut Sci 25:99–103

    Article  Google Scholar 

  • Haberland JA, Colaizzi PD, Kostrzewski MA, Waller PM, Choi CY, Eaton FE, Barnes EM, Clarke TR (2010) AgIIS, Agricultural Irrigation Imaging System. Appl Eng Agric 26:247–253

    Article  Google Scholar 

  • Hakala T, Suomalainen J, Peltoniemi J, (2010) Acquisition of bidirectional reflectance factor dataset using a micro unmanned aerial vehicle and a consumer camera. Remote Sens 2:819–832

    Article  Google Scholar 

  • Hall AE, Richards RA, Condon AG, Wright GC, Farquhar GD (2010) Carbon isotope discrimination and plant breeding. In: Plant breeding reviews. Wiley, New York

    Google Scholar 

  • Hammons RO, Tai PYP, Young CT (1978) Arginine maturity index: relationship with other traits in peanuts. Peanut Sci 5:68–71

    Article  CAS  Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    Article  CAS  PubMed  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33:6405

    Article  Google Scholar 

  • Hunt ER Jr, Cavigelli M, Daughtry CST III, McMurtrey JE, Walthall CL (2005) Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis Agric 6:359–378

    Article  Google Scholar 

  • Isleib TG, Pattee HE (2007) A note on combining ability for sensory quality of peanut. Peanut Sci 34:122–125

    Article  Google Scholar 

  • Isleib TG, Pattee HE, Giesbrecht FG (2003) Narrow-sense heritability of selected sensory descriptors in Virginia-type peanut (Arachis hypogaea L.). Peanut Sci 30:64–66

    Article  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Yueling H, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Bu¨ hler J, Minwuyelet S, Blu¨mler P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coene HH, Schurr U (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    Article  CAS  PubMed  Google Scholar 

  • Jensen T, Apan A, Young F, Zeller L (2007) Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Comput Electron Agric 59:66–77

    Article  Google Scholar 

  • Johnson BR, Mozingo RW, Young CT (1976) Evaluation of the arginine maturity index (AMI) method of maturity estimation for Virginia type peanuts. Peanut Sci 3:32–36

    Article  Google Scholar 

  • Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques and applications. Oxford University Press, New York

    Google Scholar 

  • Jones CL, Maness NO, Stone ML, Jayasekara R (2007) Chlorophyll estimation using multispectral reflectance and height sensing. Trans ASABE 50:1867–1872

    Article  CAS  Google Scholar 

  • Kandala CVK, Nelson SO (2005) Nondestructive moisture determination in small samples of peanuts by Rf impedance measurement. Trans ASAE 48:715–718

    Article  Google Scholar 

  • Kolber Z, Klimov D, Ananyev G, Rascher U, Berry J, Osmond B (2005) Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth Res 84:121–129

    Article  CAS  PubMed  Google Scholar 

  • Kostrzewski M, Waller P, Guertin P, Haberland J, Colaizzi P, Barnes E, Thompson T, Clarke T, Riley E, Choi C (2003) Ground-based remote sensing of water and nitrogen stress. Trans ASAE 46:29–38

    Article  Google Scholar 

  • Kulkarni SS, Bajwa SG, Rupe JC, Kirkpatrick TL (2008) Spatial correlation of crop response to soybean cyst nematode (Heterodera glycines). Trans ASABE 51:1451–1459

    Article  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • LemnaTec (2013) Image processing in biology. http://www.lemnatec.com. Accessed 11 Dec 2013

  • Liedgens MM (1998) Seasonal development of the maize root system minirhizotron-equipped lysimeters. Dissertation, Swiss Federal Institute of Technology Zürich, Sweden

    Google Scholar 

  • Linsenmeier A, Lehnart R, Löhnertz O, Michel H (2010) Investigation of grapevine root distribution by in situ minirhizotron observation. Vitis 49:1–6

    Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Merz TC, Chapman S (2011) Autonomous unmanned helicopter system for remote sensing missions in unknown environments. Int Arch Photogr Remote Sens Spat Inform Sci 38:1–6

    Google Scholar 

  • Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Planta 106:135–141

    Article  CAS  Google Scholar 

  • Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33:481–486

    Article  Google Scholar 

  • Nagler PL, Inoue Y, Glenn EP, Russ AL, Daughtry CST (2003) Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sens Environ 87:310–325

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bio Sci 38:328–336

    Google Scholar 

  • Ostonen I, Püttsepp Ãœ, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 41:426–442

    Article  Google Scholar 

  • Padmalatha Y, Rami Reddy S, Yellamanda Reddy T (2006) The relationship between weather parameters during developmental phase and fruit attributes and yield of peanut. Peanut Sci 33:118–124

    Article  Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index and water use of wheat. J Aust Inst Agric Sci 43:117–120

    Google Scholar 

  • Pattee HE, Wynne JC, Young JH, Cox FR (1977) The seed-hull weight ratio as an index of peanut maturity. Peanut Sci 4:47–50

    Article  Google Scholar 

  • Pattee HE, Isleib TG, Gorbet DW, Giesbrecht FG, Cui Z (2001) Parent selection in breeding for roasted peanut flavor quality. Peanut Sci 28:51–58

    Article  Google Scholar 

  • Payero JO, Neale CMU, Wright JL (2004) Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Appl Eng Agric 20:385–393

    Article  Google Scholar 

  • Penuelas J, Filella I (1998) Technical focus: visible and near-infrared reflectance techniques for diagnostic plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Penuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296

    Article  Google Scholar 

  • Perret JS, Al-Belushi ME, Deadman M (2007) Non-destructive visualization and quantification of roots using computed tomography. Soil Biol Biochem 39:391–399

    Article  CAS  Google Scholar 

  • Rascher U, Damm A, van der Linden S, Okujeni A, Pieruschka R, Schickling A, Hostert P (2010) Sensing of photosynthetic activity of crops. In: Oerke EC, Gerhards R, Menz G (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, Heidelberg

    Google Scholar 

  • Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ, Matsubara S, Märtin LLA, Merchant A, Metzner R, Müller-Linow M, Nagel KA, Pieruschka R, Pinto F, Schreiber CM, Temperton VM, Thorpe MR, van Dusschoten D, van Volkenburgh E, Windt CW, Schurr U (2011) Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol 38:968–983

    Article  CAS  Google Scholar 

  • Reuzeau C, Pen J, Frankard V, de Wolf J, Peerbolte R, Broekaert W, van Camp W (2005) TraitMillâ„¢: a discovery engine for identifying yield enhancement genes in cereals. Mol Plant Breed 5:753–759

    Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97

    Article  Google Scholar 

  • Ritchie GL, Sullivan DG, Perry CD, Hook JE, Bednarz CW (2008) Preparation of a low-cost digital camera system for remote sensing. Appl Eng Agric 24:885–896

    Article  Google Scholar 

  • Rohacek K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363

    Article  CAS  Google Scholar 

  • Romer C, Wahabzada M, Ballvora A, Pinto F, Rossini M, Panigada C, Behmann J, Léon J, Thurau C, Bauckhage C, Kersting K, Rascher U, Plümer L (2012) Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis. Funct Plant Biol 39:878–890

    Article  Google Scholar 

  • Rowland DL, Sorensen RB, Balkcom RS, Lamb MC (2005) Estimating stem water flow in peanut (Arachis hypogaea L.) under different irrigation methods. Peanut Sci 32:81–90

    Article  Google Scholar 

  • Rowland DL, Sorensen RB, Butts CL, Faircloth WH, Sullivan DG (2008) Canopy characteristics and their ability to predict peanut maturity. Peanut Sci 35:43–54

    Article  Google Scholar 

  • Ruixiu S, Wilkerson JB, Wilhelm LR, Tompkins FD (1989) A microcomputer-based morphometer for bush-type plants. Comput Electron Agric 4:43–58

    Article  Google Scholar 

  • Sanders TH, McMichael RW, Hendrix KW (2000) Occurrence of resveratrol in edible peanuts. J Agric Food Chem 48:1243–1246

    Article  CAS  PubMed  Google Scholar 

  • Schleicher TD, Bausch WC, Delgado JA (2003) Low ground-cover filtering to improve reliability of the nitrogen reflectance index (NRI) for corn N status classification. Trans ASAE 46:1707–1711

    Article  Google Scholar 

  • Schmilovitch Z, Nelson SO, Kandala CVK, Lawrence KC (1996) Implementation of dual-frequency RF impedance technique for on-line moisture sensing in single in-shell pecans. Appl Eng Agric 12:475–479

    Article  Google Scholar 

  • Schreiber U (2004) Pulse-Amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Schröder JJ, Groenwold J, Zaharieva T (1996) Soil mineral nitrogen availability to young maize plants as related to root length density distribution and fertilizer application method. Neth J Agric Sci 44:209–225

    Google Scholar 

  • Serrano L, Penuelas J, Ustin SL (2002) Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens Environ 81:355–364

    Article  Google Scholar 

  • Shou XC, Luo XW (2009) Advances in non-destructive measurement and 3D visualization methods for plant root based on machine vision. In: Proceedings of the 2nd international conference on biomedical engineering and informatics. Tianjin, BMEI’09, pp 1–5

    Google Scholar 

  • Sinclair TR, Tanner CB, Bennett JM (1984) Water-use efficiency in crop production. Bio Sci 34:36–40

    Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101:180–186

    Article  Google Scholar 

  • Sundaram J, Kandala CV, Butts CL, Chen CY, Sobolev V (2011) Nondestructive NIR reflectance spectroscopic method for rapid fatty acid analysis of peanut seeds. Peanut Sci 38:85–92

    Article  Google Scholar 

  • Taylor HM, Huck MG, Klepper B, Lund ZF (1970) Measurement of soil-grown roots in a rhizotron. Agron J 62:807–809

    Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  Google Scholar 

  • Tollner EW, Boudolf VA III, McClendon RW, Hung YC (1998) Predicting peanut maturity with magnetic resonance. Trans ASABE 41:1199–1205

    Article  Google Scholar 

  • Trabelsi S, Nelson SO (2006) Microwave sensing technique for nondestructive determination of bulk density and moisture content in unshelled and shelled peanuts. Trans ASABE 49:1563–1568

    Article  Google Scholar 

  • Upchurch DR, Ritchie JT (1983) Root observations using a video recording system in minirhizotrons. Agron J 75:1009–1015

    Article  Google Scholar 

  • Vaughn BH, Ferretti DF, Miller J, White JWC (2004) Stable isotope measurements of atmospheric CO2 and CH4. In: de Groot PA (ed) Handbook of stable isotope analytical techniques. Elsevier, Amsterdam

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Vos J, Groenwol J (1987) The relation between root growth along observation tubes and in bulk soil. In: Taylor HM (ed) Minirhizotron observation tubes: methods and applications for measuring rhizosphere dynamics. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc, Madison

    Google Scholar 

  • Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, Wiese A, Virnich O, Christ MM, Uhlig B, Juenger S, Schurr U (2007) Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol 174:447–455

    Article  PubMed  Google Scholar 

  • Wang ML, Morris JB (2007) Flavonoid content in seeds of guar germplasm using HPLC. Plant Genet Resour 5:96–99

    Article  CAS  Google Scholar 

  • Werner C, Schnyder H, Cuntz M, Keitel C, Zeeman MJ, Dawson TE, Badeck FW, Brugnoli E, Ghashghaie J, Grams TEE, Kayler ZE, Lakatos M, Lee X, Maguas C, Ogee J, Rascher KG, Siegwolf RTW, Unger S, Welker J, Wingate L, Gessler A (2012) Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 8:3083–3111

    Article  Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G (2012) Field-based phenomics for plant genetics research. Field Crop Res 133:101–112

    Article  Google Scholar 

  • Williams EJ, Drexler JS (1981) A non-destructive method for determining peanut pod maturity. Peanut Sci 8:134–141

    Article  Google Scholar 

  • Yeh N, Chung JP (2009) High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energ Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Yu S, Wilson R, Edmondson R, Parsons N (2007) Surface modelling of plants from stereo images. In: Proceedings of the 6th international conference on 3-D digital imaging and modeling, 3DIM’07, Montreal, QC

    Google Scholar 

  • Zarco-Tejada PJ, Berni JAJ, Subrez L, Sepulcre-Canto G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275

    Article  Google Scholar 

  • Zeng G, Birchfield S, Wells C (2010) Rapid automated detection of roots in minirhizotron images. Mach Vis Appl 21:309–317

    Article  Google Scholar 

  • Zhu JM, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Y. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Chen, C.Y., Butts, C.L., Dang, P.M., Wang, M.L. (2015). Advances in Phenotyping of Functional Traits. In: Kumar, J., Pratap, A., Kumar, S. (eds) Phenomics in Crop Plants: Trends, Options and Limitations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2226-2_11

Download citation

Publish with us

Policies and ethics