Control of Two-link 2-DOF Robot Manipulator Using Fuzzy Logic Techniques: A Review

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 335)


This paper reviews the literature on control of 2-DOF robot manipulator using fuzzy logic control (FLC). Different schemes of FLC laws are considered here. These are PID control, sliding mode control (SMC), and adaptive control. Importance of each control techniques with its advantages and disadvantages is discussed here. It is highlighted that the robustness of the system has improved considerably by using FLC than classical controller. A total of 65 papers were surveyed in this research area, covering contribution on each control technique for the 2-DOF robot manipulator for the time span of 1983–2014.


Slide Mode Control Robot Manipulator Fuzzy Logic Control Adaptive Fuzzy Control Slide Mode Control Scheme 


  1. 1.
    Edwards, M.: Robots in industry: an overview. Appl. Ergon. 15(1), 45–53 (1984)CrossRefGoogle Scholar
  2. 2.
    Giralt, G.: Bibliotec Basic de Ciencia e Cultura. Instituto Piaget, Lisboa-Portugal (1997)Google Scholar
  3. 3.
    Lourens, T., Berkel, R.V., Barakova, E.: Communicating emotions and mental states to robots in a real time parallel framework using Laban movement analysis. Robot. Auton. Syst. 58, 1256–1265 (2010)CrossRefGoogle Scholar
  4. 4.
    Kirby, R., Forlizzi, J., Simmons, R.: Affective social robots. Robot. Auton. Syst. 58, 322–332 (2010)CrossRefGoogle Scholar
  5. 5.
    Soltanpour, M.R., Jafaar, K., Soltani, M.: Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models. Int. J. Innovative Comput. Inf. Control 8, 5487–5498 (2012)Google Scholar
  6. 6.
    Mark, L., Nagurka Vincent, Y.: Optimal Design of Robotic Manipulator Trajectories: a Nonlinear Programming Approach. Carnegie Mellon University, Pittsburgh (1987)Google Scholar
  7. 7.
    Sabri, T.L.: Adaptive Control of Robotic Manipulators, PhD Thesis, University of Florida (1986)Google Scholar
  8. 8.
    Dieulot, J.-Y., Frederic, C.: Robust PID control of a linear mechanical axis: a case study. Mechatronics 19, 269–273 (2009)CrossRefGoogle Scholar
  9. 9.
    Rasit, K., Abdullah, F.: Model based intelligent control of a 3-joint robotic manipulator: a simulation study using artificial neural networks. ISCIS, pp. 31–40. Springer, Berlin (2004)Google Scholar
  10. 10.
    Prabhu, S.M., Garg, D.P.: Design of a fuzzy logic based robotic admittance controller. Intell. Autom. Soft Comput. 4(2), 175–190 (1998)CrossRefGoogle Scholar
  11. 11.
    Paraskevopoulos, P.N.: Digital Control Systems, 1st edition. Editora Prentice Hall, USA (1995)Google Scholar
  12. 12.
    Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller—part I & part II. IEEE Trans. Syst. Man Cybern. 20(2), 404–435 (1990)CrossRefMATHGoogle Scholar
  13. 13.
    Keigo, W., Kiyotaka, I., Takaaki, O.: A nonlinear robust control using a fuzzy reasoning and its application to a robot manipulator. J. Intell. Robot. Syst. 20, 275–294 (1997)CrossRefGoogle Scholar
  14. 14.
    Herbert, T.: Modeling and control of robot manipulators, Lorenzo Sciavicco and Bruno Siciliano. J. Intell. Robot. Syst. 21(1), 99–100 (1998)CrossRefGoogle Scholar
  15. 15.
    Kelly, R., Haber, R., Haber-Guerra, R.E., Reyes, F.: Lyapunov stable control of robot manipulators a fuzzy self-tuning procedure. Intell. Autom. Soft Comput. 5(4), 313–326 (1999)CrossRefGoogle Scholar
  16. 16.
    Slotine, J.E., Sastry, S.S.: Tracking control of nonlinear systems using sliding surfaces, with application to robot manipulators. Int. J. Contr. 38(2), 465–492 (1983)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Llama, M.A., Rafael, K., Santibaez, V.: A stable motion control system for manipulators via fuzzy self-tuning. Fuzzy Sets Syst. 124, 133–154 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Wakileh, B.A.M., Gill, K.F.: Use of fuzzy logic in robotics. Comput. Ind. 10, 35–46 (1988)CrossRefGoogle Scholar
  19. 19.
    Basil, M., Al-Hadithi, Matıa, F., Jimenez, A.: Fuzzy Controller for Robot Manipulators, pp. 688–697. Springer, Berlin (2007)Google Scholar
  20. 20.
    Lim, C.M., Hiyama, T.: Application of fuzzy logic control to a manipulator. IEEE Trans. Robot. Autom. 1(5), 688–691 (1991)CrossRefGoogle Scholar
  21. 21.
    Kishan, K.K., Jamshidi, M.: Control of Robotic Manipulator Using Fuzzy Logic. In: Proceedings of the Third IEEE Conference on Fuzzy Systems and Computational Intelligence, 1, 518–523 (1994)Google Scholar
  22. 22.
    Nagrath, I.J., Chand, P.: Development and Implementation of Intelligent Control Strategy For Robotic Manipulator. In: IEEE/IAS International Conference on Industrial Automation and Control (I A & C’95), 215–220 (1995)Google Scholar
  23. 23.
    Clarence, W.D.S.: Applications of fuzzy logic in the control of robotic manipulators. Fuzzy Sets Syst. 70, 223–234 (1995)CrossRefGoogle Scholar
  24. 24.
    Hala, B.N.D., Adel, M.A.: Fuzzy control of robot manipulators: some issues on design and rule base size reduction. Eng. Appl. Artif. Intell. 15, 401–416 (2002)CrossRefGoogle Scholar
  25. 25.
    Song, Z., Yi, J., Zhao, D., Li, X.: A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets Syst. 154, 208–226 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    David, I., Robles, G.: PID Control Dynamics of a Robotic Arm Manipulator with two Degrees of Freedom, Control de Procesos y Robotica, 1–7 August 17 (2012)Google Scholar
  27. 27.
    Rocco, P.: Stability of PID control for industrial robot arms. IEEE Trans. Robot. Automat. 12, 606–614 (1996)CrossRefGoogle Scholar
  28. 28.
    Hwang, G.C., Lin, S.C.: A stability approach to fuzzy control design for nonlinear systems. Fuzzy Sets Syst. 48, 279–287 (1992)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Santibañez, V., Camarillo, K., Javier, M.V., Campa, R.: A practical PID regulator with bounded torques for robot manipulators. Int. J. Control Autom. Syst. 8(3), 544–555 (2010)CrossRefGoogle Scholar
  30. 30.
    Arimoto, S., Miyazaki, F.: Stability and Robustness of PID Feedback Control for Robot Manipulators of Sensory Capability. In: Brady, M., Paul R.P. (eds.) Robotics Research: First International Symposium, the MIT Press, Cambridge, MA, pp. 783–789 (1984)Google Scholar
  31. 31.
    Kelly, R.: A tuning procedure for stable PID control of robot manipulators. Robotica 13, 141–148 (1995)CrossRefGoogle Scholar
  32. 32.
    Cervantesa, I., Jose, A.: On the PID tracking control of robot manipulators. Syst. Control Lett. 42, 37–46 (2001)CrossRefGoogle Scholar
  33. 33.
    Bekit, B.W., Seneviratne, L.D., Whidborne, J.F., Althoefer, K.: Fuzzy PID Tuning for Robot Manipulators. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998, IECON ’98, vol. 4: pp. 2452–2457 (1998)Google Scholar
  34. 34.
    Lia, W., Changa, X.G., Wahlb, F.M., Tsoc, S.K.: Hybrid fuzzy P+ID control of manipulators under uncertainty. Mechatronics 9, 301–315 (1999)CrossRefGoogle Scholar
  35. 35.
    Scharf, E.M., Mandic, N.J.: The application of a fuzzy controller to the control of a multi-degree of freedom robot arm. In: Industrial Application of Fuzzy Control, pp. 41–61 (1985)Google Scholar
  36. 36.
    Zhu, C., Zhang, H.: Parallel Robotics Control Strategy Study Based on Fuzzy-PID, pp. 664–669. Springer, Berlin (2011)Google Scholar
  37. 37.
    Huang, S.J., Lee, J.S.: A stable self-organizing fuzzy controller for robotic motion control. IEEE Trans. Ind. Electro. 47(2), 421–428 (2000)CrossRefGoogle Scholar
  38. 38.
    Meza, J.L., Santibanez, V., Soto, R., Llama, M.A.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59(6), 2709–2717 (2012)CrossRefGoogle Scholar
  39. 39.
    Slotine, J.E., Li, W.: Applied Nonlinear Control, Prentice Hall, New Jersey, 40–97, 276–289 (1991)Google Scholar
  40. 40.
    Young, K.K.D.: A variable structure model following control design for robotics applications. IEEE J. Robot. Autom. 4(5), 556–561 (1988)CrossRefGoogle Scholar
  41. 41.
    Su, C.Y., Leung, T.P.: A sliding mode controller with bound estimation for robot manipulators. IEEE Trans. Robot. Autom. 9(2), 208–214 (1993)CrossRefGoogle Scholar
  42. 42.
    Ha, Q.P., Rye, D.C., Durrant-Whyte, H.F.: Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35, 607–616 (1999)CrossRefMATHGoogle Scholar
  43. 43.
    Ngo, H.Q.T., Shin, J.H., Kim, W.H.: Fuzzy sliding mode control for a robot manipulator. Artif. Life Robot. 13, 124–128 (2008)CrossRefGoogle Scholar
  44. 44.
    Abdelhameed, M.M.: Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators. Mechatronics 15, 439–458 (2005)CrossRefGoogle Scholar
  45. 45.
    Seok, J.G., Lee, M.C.: Design of a fuzzy-sliding mode controller for a scara robot to reduce chattering. KSME Int. J. 15(3), 339–350 (2001)Google Scholar
  46. 46.
    Liu, J., Wang, X.: Sliding Mode Control for Robot. Springer, Berlin (2011)Google Scholar
  47. 47.
    Kang, C.G.: Variable structure fuzzy control using three input variables for reducing motion tracking errors. J. Mech. Sci. Technol. 23, 1354–1364 (2009)CrossRefGoogle Scholar
  48. 48.
    Javaheri, H., Vossoughi, G.R.: Sliding Mode Control with Online Fuzzy Tuning: application to a Robot Manipulator. In: IEEE International Conference on Mechatronics and Automation, pp. 1357–1362 (2005)Google Scholar
  49. 49.
    Dhaval, V., Ohri, J., Ankit, P.: Comparison of Conventional & Fuzzy based Sliding Mode PID Controller for Robot Manipulator. In: IEEE International Conference on Individual and Collective Behaviors in Robotics, pp. 115–119 (2013)Google Scholar
  50. 50.
    Mohammad, A., Ehsan, S.S.: Sliding Mode PID-Controller Design for Robot Manipulators by Using Fuzzy Tuning Approach. In: Proceedings of the 27th Chinese Control Conference, Kunming, Yunnan, China, 16–18 July, pp. 170–174 (2008)Google Scholar
  51. 51.
    Esogbue, A.O., Murrell, J.A.: Advances in fuzzy adaptive control. Comput. Math. Appl. 27(9/10), 29–35 (1994)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Slotine, J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  53. 53.
    Han, J.Y., Hemami, H., Yurkovich, S.: Nonlinear adaptive control of an N-link robot with unknown load. Int. J. Robot. Res. 6(3), 71–86 (1987)CrossRefGoogle Scholar
  54. 54.
    Woonchul, H.: Adaptive control based on explicit model of robot manipulators. IEEE Trans. Automat. Control 38, 654–658 (1993)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Yan, R., Tee, K.P., Li, H.: Nonlinear Control of a Robot Manipulator with Time-Varying Uncertainties, pp. 202–211. Springer, Berlin (2010)Google Scholar
  56. 56.
    Yang, Y., Zhou, C., Du, J.: Adaptive robust fuzzy tracking control for pole balancing robots using small gain design. Intell. Autom. Soft Comput. 11(2), 97–109 (2005)CrossRefGoogle Scholar
  57. 57.
    Byung, K.Y., Woon, C.H.: Adaptive control of robot manipulator using fuzzy compensator. IEEE Trans. Fuzzy Syst. 8(2), 186–199 (2000)CrossRefGoogle Scholar
  58. 58.
    Liu, J., Sun, F.: Chattering free adaptive fuzzy terminal sliding mode control for second order nonlinear system. J. Control Theory Appl. 4, 385–391 (2006)CrossRefMATHGoogle Scholar
  59. 59.
    Mehmet, O.: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(6), 1561–1570 (2008)CrossRefGoogle Scholar
  60. 60.
    Kim, Y.T.: Independent joint adaptive fuzzy control of robot manipulator. Intell. Autom. Soft Comput. 11(1), 21–32 (2005)CrossRefGoogle Scholar
  61. 61.
    Wang, J., Rad, A.B., Chan, P.T.: Indirect adaptive fuzzy sliding mode control: part I: fuzzy switching. Fuzzy Sets Syst. 122(1), 21–30 (2001)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Sharkawy, A.B., Salman, S.A.: An adaptive fuzzy sliding mode control scheme for robotic systems. Intell. Control Autom. 2, 299–309 (2011)CrossRefGoogle Scholar
  63. 63.
    Guo, Y., Woo, P.Y.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(2), 149–159 (2003)CrossRefGoogle Scholar
  64. 64.
    Yu, W.S., Karkoub, M., Wu, T.S., Her, M.G.: Delayed output feedback control for nonlinear systems with two-layer interval fuzzy observers. IEEE Trans. Fuzzy Syst. 22(3), 611–630 (2014)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNIT SilcharAssamIndia

Personalised recommendations