Skip to main content

Comparison of Primary and Secondary Emissions from an Internal Combustion Engine

  • Conference paper
  • First Online:
Novel Combustion Concepts for Sustainable Energy Development

Abstract

Diesel engines are among the most efficient power sources. Diesel engine emit relatively lower amounts of CO and HC emissions as compared to the gasoline engines but higher amounts of oxides of nitrogen (NO X ) and particulate matter (PM). NO X and PM are both associated with deleterious effects on human health. Polycyclic aromatic hydrocarbons (PAHs) and trace metals are two most toxic and harmful class of chemical species present in the engine exhaust. Diesel emission is composed of a complex mixture of many organic compounds (OC) or soluble organic fraction (SOF), nitrates, sulfate, metals, and irritants (such as acrolein, ammonia, PAHs) which are typically adsorbed over elemental carbon (EC) core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Khalek IS, Kittelson DB (1995) Real time measurement of volatile and solid exhaust particles using a catalytic stripper. In: SAE technical paper

    Google Scholar 

  • Agarwal AK, Gupta T, Kothari A (2011) Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renew Sustain Energy Rev 15:3278–3300

    Article  Google Scholar 

  • Agarwal AK, Gupta T, Dixit N, Shukla PC (2013) Assessment of toxic potential of primary and secondary particulates/aerosols from biodiesel vis-a-vis mineral diesel fuelled engine. Inhalation Toxicol 25:325–332

    Article  Google Scholar 

  • Akasaka Y, Suzuki T, Sakurai Y (1997) Exhaust emissions of a DI diesel engine fueled with blends of biodiesel and low sulfur diesel fuel. In: SAE technical paper

    Google Scholar 

  • Atal A, Levendis YA, Carlson J, Dunayevskiy Y, Vouros P (1997) On the survivability and pyrosynthesis of PAH during combustion of pulverized coal and tire crumb. Combust Flame 110:462–478

    Article  Google Scholar 

  • Aumont B, Madronich S, Bey I, Tyndall GS (2000) Contribution of secondary VOC to the composition of aqueous atmospheric particles: a modeling approach. J Atmos Chem 35:59–75

    Article  Google Scholar 

  • Bae M-S, Schauer JJ, DeMinter JT, Turner JR, Smith D, Cary RA (2004) Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmos Environ 38:2885–2893

    Article  Google Scholar 

  • Baltensperger U, Dommen J, Alfarra MR, Duplissy J, Gaeggeler K, Metzger A, Facchini MC, Decesari S, Finessi E, Reinnig C (2008) Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POLYSOA project. J Aerosol Med Pulm Drug Delivery 21:145–154

    Article  Google Scholar 

  • Bergmann M, Kirchner U, Vogt R, Benter T (2009) On-road and laboratory investigation of low-level PM emissions of a modern diesel particulate filter equipped diesel passenger car. Atmos Environ 43:1908–1916

    Article  Google Scholar 

  • Blando JD, Turpin BJ (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos Environ 34:1623–1632

    Article  Google Scholar 

  • Blando JD, Porcja RJ, Li T-H, Bowman D, Lioy PJ, Turpin BJ (1998) Secondary formation and the Smoky Mountain organic aerosol: an examination of aerosol polarity and functional group composition during SEAVS. Environ Sci Technol 32:604–613

    Article  Google Scholar 

  • Brüske I, Hampel R, Socher MM, Rückerl R, Schneider A, Heinrich J, Oberdörster G, Wichmann H-E, Peters A (2010) Impact of ambient air pollution on the differential white blood cell count in patients with chronic pulmonary disease. Inhalation Toxicol 22:245–252

    Article  Google Scholar 

  • CAEPA (1993) Benzo[a]Pyrene as a toxic contaminant. Part B: health assessment

    Google Scholar 

  • Cowley L, Stradling R, Doyon J (1993) The influence of composition and properties of diesel fuel on particulate emissions from heavy-duty engines. In: SAE technical paper

    Google Scholar 

  • Den Ouden C, Clark R, Cowley L, Stradling R, Lange W, Maillard C (1994) Fuel quality effects on particulate matter emissions from light-and heavy-duty diesel engines. In: SAE technical paper

    Google Scholar 

  • Di Y, Cheung C, Huang Z (2009) Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Sci Total Environ 407:835–846

    Article  Google Scholar 

  • Diaz EA, Chung Y, Papapostolou V, Lawrence J, Long MS, Hatakeyama V, Gomes B, Calil Y, Sato R, Koutrakis P (2012) Effects of fresh and aged vehicular exhaust emissions on breathing pattern and cellular responses-pilot single vehicle study. Inhalation Toxicol 24:288–295

    Article  Google Scholar 

  • Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A (1994) Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest 94:1417

    Article  Google Scholar 

  • Diaz-Sanchez D, Tsien A, Fleming J, Saxon A (1997) Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol 158:2406–2413

    Google Scholar 

  • Donaldson K, Beswick PH, Gilmour PS (1996) Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88:293–298

    Article  Google Scholar 

  • Dusek U, Amann M (2000) Secondary organic aerosol–formation mechanisms and source contributions in Europe. IIASA interim report IR-00-066

    Google Scholar 

  • Dwivedi D, Agarwal AK, Sharma M (2006) Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: a comparative study. Atmos Environ 40:5586–5595

    Article  Google Scholar 

  • Eastwood P (2008) Particulate emissions from vehicles. Wiley, New York

    Google Scholar 

  • Facchini M, Fuzzi S, Lind J, Fierlinger‐Oberlinninger H, Kalina M, Puxbaum H, Winiwarter W, Arends B, Wobrock W, Jaeschke W (1992) Phase-partitioning and chemical reactions of low molecular weight organic compounds in fog. Tellus B 44:533–544

    Article  Google Scholar 

  • Facchini MC, Fuzzi S, Zappoli S, Andracchio A, Gelencsér A, Kiss G, Krivácsy Z, Mészáros E, Hansson HC, Alsberg T (1999) Partitioning of the organic aerosol component between fog droplets and interstitial air. J Geophys Res: Atmos (1984–2012) 104:26821–26832

    Article  Google Scholar 

  • Forstner HJ, Flagan RC, Seinfeld JH (1997a) Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: molecular composition. Environ Sci Technol 31:1345–1358

    Article  Google Scholar 

  • Forstner HJ, Flagan RC, Seinfeld JH (1997b) Molecular speciation of secondary organic aerosol from photooxidation of the higher alkenes: 1-octene and 1-decene. Atmos Environ 31:1953–1964

    Article  Google Scholar 

  • Grosjean D, Seinfeld JH (1967) Parameterization of the formation potential of secondary organic aerosols. Atmos Environ 23(1989):1733–1747

    Google Scholar 

  • Gupta T, Kothari A, Srivastava DK, Agarwal AK (2010) Measurement of number and size distribution of particles emitted from a mid-sized transportation multipoint port fuel injection gasoline engine. Fuel 89:2230–2233

    Article  Google Scholar 

  • Gupta T, Dixit N, Agarwal AK, Gupta S (2011) The secondary organic carbon (SOC) formation from a CRDI automotive diesel engine exhaust. In: SAE technical paper

    Google Scholar 

  • Holes A, Eusebi A, Grosjean D, Allen DT (1997) FTIR analysis of aerosol formed in the photooxidation of 1, 3, 5-trimethylbenzene. Aerosol Sci Technol 26:516–526

    Article  Google Scholar 

  • Jacobson M, Hansson HC, Noone K, Charlson R (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38:267–294

    Article  Google Scholar 

  • Kalligeros S, Zannikos F, Stournas S, Lois E, Anastopoulos G, Teas C, Sakellaropoulos F (2003) An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass Bioenergy 24:141–149

    Article  Google Scholar 

  • Kaul D, Gupta T, Tripathi S, Tare V, Collett J Jr (2011) Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ Sci Technol 45:7307–7313

    Article  Google Scholar 

  • Khair MK, Majewski WA (2006) Diesel emissions and their control. In: SAE technical paper

    Google Scholar 

  • Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29:575–588

    Article  Google Scholar 

  • Lange W (1991) The effect of fuel properties on particulates emissions in heavy-duty truck engines under transient operating conditions. In: SAE technical paper

    Google Scholar 

  • Li X, Wallace JS (1995) A phenomenological model for soot formation and oxidation in direct-injection diesel engines. In: SAE technical paper

    Google Scholar 

  • Limbeck A, Puxbaum H (1999) Organic acids in continental background aerosols. Atmos Environ 33:1847–1852

    Article  Google Scholar 

  • Madden MC, Richards JH, Dailey LA, Hatch GE, Ghio AJ (2000) Effect of ozone on diesel exhaust particle toxicity in rat lung. Toxicol Appl Pharmacol 168:140–148

    Article  Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  Google Scholar 

  • Ott WR, Siegmann HC (2006) Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings. Atmos Environ 40:821–843

    Article  Google Scholar 

  • Owen K, Coley T (1995) Automotive fuels reference book

    Google Scholar 

  • Pan J, Quarderer S, Smeal T, Sharp C (2000) Comparison of PAH and nitro-PAH emissions among standard diesel fuel, biodiesel fuel, and their blend on diesel engines. In: Proceedings of the 48 th ASMS conference on mass spectrometry and allied topics, Long Beach, CA

    Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262

    Article  Google Scholar 

  • Rogge WF, Mazurek MA, Hildemann LM, Cass GR, Simoneit BR (1993) Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos Environ. Part A. General Top 27:1309–1330

    Article  Google Scholar 

  • Ruiz PA, Lawrence JE, Wolfson JM, Ferguson ST, Gupta T, Kang C-M, Koutrakis P (2007) Development and evaluation of a photochemical chamber to examine the toxicity of coal-fired power plant emissions. Inhalation Toxicol 19:597–606

    Article  Google Scholar 

  • Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sharma M, Agarwal AK, Bharathi K (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39:3023–3028

    Article  Google Scholar 

  • Shukla PC, Gupta T, Agarwal AK (2014) A Comparative morphological study of primary and aged particles emitted from a biodiesel (B20) vis-à-vis diesel fuelled CRDI engine. Aerosol Air Qual Res 14:934–942

    Google Scholar 

  • Tsien A, Diaz-Sanchez D, Ma J, Saxon A (1997) The organic component of diesel exhaust particles and phenanthrene, a major polyaromatic hydrocarbon constituent, enhances IgE production by IgE-secreting EBV-transformed human B cells in vitro. Toxicol Appl Pharmacol 142:256–263

    Google Scholar 

  • Turpin BJ, Saxena P, Andrews E (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos Environ 34:2983–3013

    Article  Google Scholar 

  • Zielinska B, Goliff W, McDaniel M, Cahill T, Kittelson D, Watts W (2003) Chemical analyses of collected diesel particulate matter samples in the E-43 Project. National Renewable Energy Laboratory, Ann Arbor, MI

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Gupta, T., Agarwal, A.K., Shukla, P.C. (2014). Comparison of Primary and Secondary Emissions from an Internal Combustion Engine. In: Agarwal, A., Pandey, A., Gupta, A., Aggarwal, S., Kushari, A. (eds) Novel Combustion Concepts for Sustainable Energy Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2211-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2211-8_18

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2210-1

  • Online ISBN: 978-81-322-2211-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics