Skip to main content

Addressing Object Heterogeneity Through Edge Cluster in Multi-mode Networks

  • Conference paper
  • First Online:
  • 1891 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 31))

Abstract

The oceans of data generated by social media have become a goldmine to researchers in the data mining domain. Discovering actionable knowledge by extracting latent patterns has many advantages. One of the utilities of mining social data is learning collective behavior which helps in taking well informed decisions pertaining to humanitarian assistance, disaster relief and such real world applications. In multi mode while studying the collective behavior using edge centric approach, object heterogeneity is a problem. In this paper, we propose a scheme temporal regularized evolutionary multimode clustering algorithm which can address object heterogeneity in social media with multi-mode more effectively. With this the prediction performance of collective behavior is improved further. We built a prototype application to demonstrate the proof of perception. The empirical results are encouraging and our approach can be used in real world applications that mine social media data explicitly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  2. Macskassy, S.A., Provost, F.: A simple relational classifier. In: Proceedings of Multi-Relational Data Mining Workshop (MRDM) at the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2003)

    Google Scholar 

  3. Xu, Z., Tresp, V., Yu, S., Yu, K.: Nonparametric relational learning for social network analysis. In: KDD’08: Proceedings of Workshop Social Network Mining and Analysis (2008)

    Google Scholar 

  4. Neville, J., Jensen, D.: Leveraging relational auto correlation with latent group models. In: MRDM’05: Proceedings of Fourth International Workshop Multi-Relational Mining, pp. 49–55 (2005)

    Google Scholar 

  5. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: KDD’09: Proceedings of 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–826 (2009)

    Google Scholar 

  6. Newman, M.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys). 74(3), 036104. http://dx.doi.org/10.1103/PhysRevE.74.036104 (2006)

  7. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  8. Airodi, E., Blei, D., Fienberg, S., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Google Scholar 

  10. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Google Scholar 

  11. Shen, H., Cheng, X., Cai, K., Hu, M.: Detect overlapping and hierarchical community structure in networks. Phys. A: Stat. Mech. Appl. 388(8), 1706–1712 (2009)

    Google Scholar 

  12. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0308217. 2004. 1090 IEEE Trans. Know. Data Eng. 24(6) (2012)

  13. Gregory, S.: An algorithm to find overlapping community structure in networks. In: Proceedings of European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 91–102. http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000712 (2007)

  14. Evans, T., Lambiotte, R.: Line graphs, link partitions and overlapping communities. Phys. Rev. E 80(1), 16105 (2009)

    Article  Google Scholar 

  15. Ahn, Y.Y., Bagrow, J.P., Lehmann S.: Link communities reveal multi-scale complexity in networks. http://www.citebase.org/abstract?id=oai:arXiv.org:0903.3178 (2009)

  16. Tang, L., Wang, X., Liu, H.: Scalable learning of collective behavior. IEEE Trans. Knowl. Data Eng. 24(6) (2012)

    Google Scholar 

  17. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatkom, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  18. Bentley, J.: Multidimensional binary search trees used for associative searching. Comm. ACM 18, 509–175 (1975)

    Google Scholar 

  19. Jin, R., Goswami, A.Y., Agrawal, G.: Fast and exact out-of-core and distributed k-means clustering. Knowl. Inf. Syst. 10(1), 17–40 (2006)

    Article  Google Scholar 

  20. Bradley, P., Fayyad, U., Reina, C.: Scaling clustering algorithms to large databases. In: Proceedings of ACM Knowledge Discovery and Data Mining (KDD) Conference (1998)

    Google Scholar 

  21. Sato, M., Shii, S.: On-line EM algorithm for the normalized Gaussian network. Neural Comput. 12, 407–432 (2000)

    Article  Google Scholar 

  22. Wasserman, S., Faust, K.: Social Network Analysis Methods and Applications. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  23. Baumes, J., Goldberg, M., Ismail, M.M., Wallace, W.: Discovering hidden groups in communication networks. In: 2nd NSF/NIJ Symposium on Intelligence and Security Informatics (2004)

    Google Scholar 

  24. Meyers, M.N.L.A., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theor. Biol. 240, 400–418 (2006)

    Google Scholar 

  25. Tang, L., Liu, H.: Toward predicting collective behavior via social dimension extraction. IEEE Intell. Syst. 25(4), 19–25 (2010)

    Article  MathSciNet  Google Scholar 

  26. Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community evolution in dynamic multi-mode networks. KDD’08 (2008)

    Google Scholar 

  27. Yu, K., Yu, S., Tresp, V.: Soft clustering on graphs. In: Proceedings of Advances in Neural Information Processing Systems (NIPS) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashikumar G. Totad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Totad, S.G., Smitha Kranthi, A., Matta, A.K. (2015). Addressing Object Heterogeneity Through Edge Cluster in Multi-mode Networks. In: Jain, L., Behera, H., Mandal, J., Mohapatra, D. (eds) Computational Intelligence in Data Mining - Volume 1. Smart Innovation, Systems and Technologies, vol 31. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2205-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2205-7_27

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2204-0

  • Online ISBN: 978-81-322-2205-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics