Skip to main content

Impacts on Insect and Mite Pests

  • Chapter
  • First Online:
Climate Resilient Agriculture for Ensuring Food Security
  • 2289 Accesses

Abstract

The occurrence of climate changes is evident from increase in global average temperature, changes in the rainfall pattern, and extreme climatic events. Climate and weather can substantially influence the fauna, flora, population dynamics development, and distribution of insects. Anthropogenically induced climatic change arising from increasing levels of atmospheric greenhouse gases would, therefore, be likely to have a significant effect on agricultural insect pests. Current best estimates of changes in climate indicate an increase in global mean annual temperatures of 1 °C by 2025 and 3 °C by the end of the next century. Such increases in temperature have a number of implications for temperature-dependent insect pests in midlatitude regions. Changes in climate may result in changes in geographical distribution, increased overwintering, changes in population growth rates, increases in the number of generations, extension of the development season, changes in crop–pest synchrony, changes in interspecific interactions, and increased risk of invasion by migrant pests.

Impacts of climate change on crop production mediated through changes in populations of serious insect pests need to be given careful attention for planning and devising adaptation and mitigation strategies for future pest management programs. Therefore, there is a need to have a concerted look at the likely effects of climate change on insect pests and devise appropriate measures to mitigate the effects of climate change on food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts M, Cockrell P, Nuessly G, Raid R, Schueneman T, Seal, D (1999) Crop profile for corn (sweet) in Florida. Available from http://www.ipmcenters.org/CropProfiles/docs/FLcorn-sweet.html

  • Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, Durand-Tardif M, Farquhar GD, Godbold DL, Hendrey GR, Hickler T, Kaduk J, Karnosky DF, Kimball BA, Körner CH, Koornneef M, Lafarge T, Leakey ADB, Lewin KF, Long SP, Manderscheid R, Mcneil DL, Mies TA, Miglietta F, Morgan JA, Nagy J, Norby RJ, Norton RM, Percy KE, Rogers A, Soussana JF, Stitt M, Weigel HJ, White JW (2008) Next generation of elevated CO2 experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31(9):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Altieri MA, Ponti L, Nicholls C (2005) Enhanced pest management through soil health: toward a belowground habitat management strategy. Biodynamics (Summer):33–40

    Google Scholar 

  • Andrew NR, Hughes L (2005) Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Glob Ecol Biogeogr 14:249–262

    Article  Google Scholar 

  • Awmack CS, Harrington R (2000) Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agric For Entomol 2(1):57–61

    Article  Google Scholar 

  • Awmack CS, Woodcock CM, Harrington R (1997) Climate change may increase vulnerability of aphids to natural enemies. Ecol Entomol 22:366–368

    Article  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  CAS  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Alan Buse A, John C, Coulson JC, John Farrar J, John EG, Good JEG, Harrington R, Hartley H, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Benedict JH (2003) Strategies for controlling insect, mite and nematode pests. In: Chrispeels MJ, Sadava DE (eds) Plants, genes and crop bio-technology. Jones and Bartlet Publishers, Sudbury, pp 414–442

    Google Scholar 

  • Bezemer TM, Jones TH, Knight KJ (1998) Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116:128–135

    Article  Google Scholar 

  • Blanford S, Thomas MB (1999) Host thermal biology: the key to understanding host–pathogen interactions and microbial pest control? Agric For Entomol 1(3):195–202

    Article  Google Scholar 

  • Busby JR (1991) BIOCLIM – a bioclimate analysis and prediction system. Plant Prot Q 6:8–9

    Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4:785–796

    Article  Google Scholar 

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865

    Article  Google Scholar 

  • Castle LA, Wu G, McElroy D (2006) Agricultural input traits: past, present and future. Curr Opin Biotechnol 17:105–112

    Google Scholar 

  • Chahal SK, Bains GS, Dhaliwal LK (2008) Climate change: mitigation and adaptation. In: Proceedings of international conference on climate change, biodiversity and food security in the south Asian region, 3–4 November, 2008, Punjab State Council for Science and Technology, Chandigarh and United Nations Educational, Scientific and Cultural Organization, New Delhi, p 12

    Google Scholar 

  • Chander S (1998) Infestation of root and foliage/earhead aphids on wheat in relation to predators. Indian J Agric Sci 68(11):754–755

    Google Scholar 

  • Chander S, Singh VS, Kalra N (2003) Aphid infestation on barley in relation to climatic variability. In: Proceedings of the national symposium on frontier areas of entomological research, Entomology Division, Indian Agricultural Research Institute, New Delhi, pp 37–38

    Google Scholar 

  • Chander S, Reji G, Aggarwal PK (2009) Assessing impact of climate change on rice gundhi bug using a population dynamics simulation model. In: Aggarwal PK (ed) Global climate change and Indian agriculture: case studies from the ICAR network project. ICAR, New Delhi, pp 60–65

    Google Scholar 

  • Chapman RF (1998) The insects-structure and function, 4th edn. Cambridge University Press, Cambridge, 788 pp

    Google Scholar 

  • Chen CC, McCarl BA (2001) An investigation of the relationship between pesticide usage and climate change. Clim Chang 50:475–487

    Article  Google Scholar 

  • Chen FJ, Wu G, Lü J, Ge F (2005) Effects of elevated CO2 on the foraging behavior of cotton bollworm, Helicoverpa armigera. Insect Sci 12:359–365

    Article  CAS  Google Scholar 

  • Chen F, Wu G, Parajulee MN, Ge F (2007) Long-term impacts of elevated carbon dioxide and transgenic Bt cotton on performance and feeding of three generations of cotton bollworm. Entomol Exp Appl 124:27–35

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Tree 22:357–365

    PubMed  Google Scholar 

  • Coakley SM, Scherm H (1996) Plant disease in a changing global environment. Asp Appl Biol 45:227–238

    Google Scholar 

  • Coll M, Hughes L (2008) Effects of elevated CO2 on an insect omnivore: A test for nutritional effects mediated by host plants and prey. Agric Ecosyst Environ 123:271–279

    Article  CAS  Google Scholar 

  • Collier RH, Finch S, Phelps K, Thompson AR (1991) Possible impact of global warming on cabbage root fly (Delia radicum) activity in the UK. Ann Appl Biol 118:261–271

    Article  Google Scholar 

  • Conlong DE, Rutherford RS (2009) Conventional and new biological and habitat interventions for integrated pest management systems: Review and case studies using Eldana saccharina Walker (Lepidoptera: Pyralidae). In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process, vol 1. Springer, Dordrecht, pp 113–129

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect plant interactions. Conserv Biol 13:700–712

    Article  Google Scholar 

  • CPC (2007) Crop protection compendium. CAB International. http://www.cabi.org/compendia/cpc/. Accessed via German national licence http://www.nationallizenzen.de/

  • Deka S, Byjesh K, Kumar U, Choudhary R (2008) Climate change and impacts on crop pests – a critique. In: ISPRS archives XXXVIII-8/W3 workshop proceedings: Impact of climate change on Agriculture, pp 147–149

    Google Scholar 

  • DeLucia EH, Casteel CL, Nabity PD, O’Neill BF (2008) Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. PNAS 105(6):1781–1782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105(18):6668–6672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhaliwal GS, Dilawari VK (1993) Advances in host resistance to insects. Kalyani Publishers, New Delhi

    Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37:1–7

    Google Scholar 

  • Dhawan AK, Peshin R (2009) Integrated pest management: concept, opportunities, challenges. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process, vol 1. Springer, Dordrecht, pp 113–129

    Google Scholar 

  • Dhawan AK, Singh K, Saini S, Mohindru B, Kaur A, Singh G, Singh S (2007) Incidence and damage potential of mealybug, Phenacoccus solenopsis Tinsley, on cotton in Punjab. Indian J Ecol 34:110–116

    Google Scholar 

  • Diaz S, Fraser LH, Grime JP, Falczuk V (1998) The Impact of elevated CO2 on plant-herbivore interactions: experimental evidence of moderating effects at the community level. Oecologia 117:177–186

    Article  Google Scholar 

  • Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3:1–9

    Article  Google Scholar 

  • Dosdall LM (1994) Evidence for successful overwintering of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), in Alberta. Can Entomol 126:183–185

    Article  Google Scholar 

  • Elphinstone J, Toth IK (2008) Erwinia chrysanthemi (Dikeya spp.) – the facts. Potato Council, Oxford

    Google Scholar 

  • EPA (1989) The potential effects of global climate change on the United States. vol. 2: national studies. Review of the report to congress. US Environmental Protection Agency, Washington, DC, 261 pp

    Google Scholar 

  • FAO (2008) Rapid assessment of pollinators’ status. FAO, Rome

    Google Scholar 

  • Ford KA, Casida JE, Chandranb D (2010) Neonicotinoid insecticides induce salicylate associated plant defense responses. PNAS 107:17527–17532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groninger JW, Seiler JR, Zedaker SM, Ber-rang PC (1996) Photosynthetic response of loblolly pine and sweetgum seedling stands to elevated carbon dioxide, water stress, and nitrogen level. Can J For Res 26:95–102

    Article  Google Scholar 

  • Gutierrez AP, Pointi L, d’Oultremont T, Ellis CK (2008) Climate change effects on poikilotherm tritrophic interactions. Climate Change 87:67–92

    Article  Google Scholar 

  • Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, Delucia E (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  CAS  PubMed  Google Scholar 

  • Harrington R, Fleming R, Woiwood IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance – a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Hill DS (1987) Agricultural insects pests of temperate regions and their control. Cambridge University Press, Cambridge, 659 pp

    Google Scholar 

  • IMD (2010) Annual climate summary. India Meteorological Department, Government of India, Ministry of Earth Sciences, Pune, p 27

    Google Scholar 

  • IPCC (1990a) Climate change: the IPCC scientific assessment. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) World meteorological organization and United Nations environmental program. Cambridge University Press, Cambridge, 365 pp

    Google Scholar 

  • IPCC (1990b) The potential impacts of climate change on agriculture and forestry. Intergovernmental Panel on Climate Change, Geneva and Nairobi, Kenya: World Meteorological Organization and UN Environment Program, 55 pp

    Google Scholar 

  • Kaiser J (1996) Pests overwhelm Bt cotton crop. Nature 273:423

    CAS  Google Scholar 

  • Kannan R, James DA (2009) Effects of climate change on global diversity: a review of key literature. Trop Ecol 50:31–39

    Google Scholar 

  • Kiritani K (1971) Distribution and abundance of the southern green stink bug, Nezara viridula. In: Proceedings of the symposium on rice insects, TARC, MAF, Tokyo, pp 235–248

    Google Scholar 

  • Klein AM, Vaissiere B, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed Central  PubMed  Google Scholar 

  • Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410

    Article  Google Scholar 

  • Kranti KR, Naidu S, Dhawad CS, Tatwawadi A, Mate K, Patil E, Bharose AA, Behere GT, Wadaskar RM, Kranti S (2005) Temporal and intraplant variation in Cry1Ac expression of Bt cotton and its influence on the development of cotton bollworm, Helicoverpa armigera (Hubner), (Noctuidae, Lepidoptera). Curr Sci 89:291–298

    Google Scholar 

  • Kuchlein JH, Ellis WN (1997) Climate-induced changes in the microlepidoptera fauna of the Netherlands and the implications for nature conservation. J Insect Conserv 1:73–80

    Article  Google Scholar 

  • Kudo G, Nishikawa Y, Kasagi T, Kosuge S (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecol Res 19:255–259

    Article  Google Scholar 

  • Legrand MA, Colinet H, Vernon P, Hance T (2004) Autumn, winter and spring dynamics of aphid Sitobion avenae and parasitoid Aphidius rhopalosiphi interactions. Ann Appl Biol 145:139–144

    Article  Google Scholar 

  • Lever RJW (1969) Do armyworm follow the rain? Wild Crops 21:351–352

    Google Scholar 

  • Lewis T (1997) Thrips as crop pests. CAB International/Cambridge University Press, Cambridge, 740 pp

    Google Scholar 

  • Macvean R, Dixon AFG (2001) The effect of plant drought-stress on populations of the pea aphid Acyrthosiphon pisum. Ecol Entomol 26:440–443

    Article  Google Scholar 

  • Manning WJ, von Tiedemann A (1995) Climate change: Potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245

    Article  CAS  PubMed  Google Scholar 

  • Masters GJ, Brown VK, Clarke IP, Whittaker JB, Hollier JA (1998) Direct and indirect effects of climate change on insect herbivores: Auchenorrhyncha (Homoptera). Ecol Entomol 23(1):45–52

    Article  Google Scholar 

  • Mattson WJ, Haack RJ (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:374–380

    Article  Google Scholar 

  • Musolin DH (2007) Insects in a warmer world: ecological, physiological and life history responses of true bugs (Heteroptera) to climate change. Glob Chang Biol 13:1565–1585

    Article  Google Scholar 

  • Musser FP, Shelton AM (2005) The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci 61:508–510

    Article  CAS  PubMed  Google Scholar 

  • Naimov S, Dukiandjiev S, de Maagd RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57

    Article  CAS  PubMed  Google Scholar 

  • News IARI (2008) Brown plant hopper outbreak in rice. IARI News 24:1–2

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oerke EC, Dehne HW, Schonbeck F, Weber A (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parry ML, Carter TR (1989) An assessment of the effects of climatic change on agriculture. Clim Chang 15:95–116

    Article  Google Scholar 

  • Pathak MD, Khan ZR (1994) Insect pests of rice. International Rice Research Institute, Manila

    Google Scholar 

  • Petzoldt C, Seaman A (2010) Climate change effects on insects and pathogens. Climate change and agriculture: promoting practical and profitable responses. Available at http://www.climateandfarming.org/pdfs/FactSheets/III.2Insects.Pathogens.pdf

  • Pimentel D et al (1993) Ethical issues concerning potential global climate change on food production. J Agric Environ Ethics 5:113–146

    Article  Google Scholar 

  • Pollan S (2009) Effect of temperature on development of the microsporidium Nosema lymantriae and disease progress in the host Lymantria dispar. Master’s thesis. Institute of Forest Entomology, BOKU University of Natural Resources and Applied Life Sciences, Vienna

    Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Reed W, Pawar CS (1982) Heliothis: a global problem. In: Proceedings of the international workshop on Heliothis management, Patancheru, India, 15–20 November 1981

    Google Scholar 

  • Reiners S, Petzoldt C (eds) (2005) Integrated crop and pest management guidelines for commercial vegetable production. Cornell Cooperative Extension publication #124VG http://www.nysaes.cornell.edu/recommends/

  • Reitz SR, Karowa DN, Diawara MM, Trumble JT (1997) Effects of elevated atmospheric carbon dioxide on the growth and linear furanocoumarin content of celery. J Agric Food Chem 45:3642–3646

    Article  CAS  Google Scholar 

  • Rhoades DF (1985) Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am Natl 125:205–238

    Article  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmil-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rozenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Roth SK, Lindroth RL (1995) Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect–parasitoid interactions. Glob Chang Biol 1:173–182

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Chang Biol 6:407–416

    Article  Google Scholar 

  • Sachs J (2008) Common wealth: economics for a crowded planet. Allen Lane, London

    Google Scholar 

  • Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding Cry1A insecticidal proteins in cotton. Crop Sci 38:1–11

    Article  CAS  Google Scholar 

  • Sharma HC, Ortiz R (2000) Transgenics, pest management, and the environment. Curr Sci 79:421–437

    CAS  Google Scholar 

  • Sharma HC, Dhillon MK, Kibuka J, Mukuru SZ (2005) Plant defense responses to sorghum spotted stem borer, Chilo partellus under irrigated and drought conditions. Int Sorghum Millets Newsl 46:49–52

    Google Scholar 

  • Sharma HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 115–140

    Chapter  Google Scholar 

  • Shelton AM, Wilsey WR, Soderlund DM (2001) Classification of insecticides and acaricides for resistance management. Dept. of Entomology, NYSAES, Geneva, NY 14456. 315-787-2352. http://www.nysaes.cornell.edu/ent/faculty/shelton/pdf/res_mgmt.pdf

  • Sidhu AK, Mehta HS (2008) Role of butterflies in the natural ecosystem with special reference to high altitude (Pangi Valley, Himachal Pradesh). In: Proceedings of international conference on climate change, biodiversity and food security in the South Asian Region, 3–4 November 2008. Punjab State Council for Science and Technology, Chandigarh and United Nations Educational, Scientific and Cultural Organization, New Delhi, p 36

    Google Scholar 

  • Skirvin DJ, Perry JN, Harrington R (1997) The effect of climate change on an aphid–coccinellid interaction. Glob Chang Biol 3:1–11

    Article  Google Scholar 

  • Srikanth J (2007) World and Indian scenario of sugarcane woolly aphid. In: Mukunthan N, Srikanth J, Singaravelu B, Rajula Shanthy T, Thiagarajan R, Puthira Prathap D (eds) Woolly aphid management in sugarcane. Extension Publication, Sugarcane Breeding Institute, Coimbatore, pp 1–12

    Google Scholar 

  • Stivers L (1999) Crop profile for corn (sweet) in New York. http://pestdata.ncsu.edu/cropprofiles/docs/nycorn-sweet.html

  • Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13:281–299

    Article  Google Scholar 

  • Sutherst RW, Yonow T, Chakraborty S, O’Donnell C, White N (1996) A generic approach to defining impacts of climate change on pests, weeds and diseases in Australasia. In: Bouma WJ, Pearman GI, Manning MR (eds) Greenhouse, coping with climate change. CSIRO, Melbourne

    Google Scholar 

  • Tanwar RK, Jeyakumar P, Vennila S (2010) Papaya mealybug and its management strategies. Technical Bulletin 22. National Centre for Integrated Pest Management, New Delhi

    Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Timoney KP (2003) The changing disturbance regime of the boreal forest of the Canadian Prairie Provinces. For Chron 79:502–516

    Article  Google Scholar 

  • USDA (1999) Drought in the US. Available at http://www.ers.usda.gov

  • Walker PA, Cocks KD (1991) HABITAT: a procedure for modelling a disjoint environmental envelope for a plant or animal species. Glob Ecol Biogeogr Lett 1:108–118

    Article  Google Scholar 

  • Whitney S, Whalen J, VanGessel M, Mulrooney B (2000) Crop profile for corn (sweet) in Delaware. http://www.ipmcenters.org/CropProfiles/docs/DEcorn-sweet.html

  • Williams R, Norby RJ, Lincoln DE (2000) Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Glob Chang Biol 6:685–695

    Article  Google Scholar 

  • Willis CG, Ruhfel B, Primack RB, Miller Rushing AJ, Davis CC (2008) Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc Natl Acad Sci U S A 105:17029–17033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav DS, Subhash C, Selvraj K, Selvraj K (2010) Agroecological zoning of brown plant hopper, [Nilaparvata lugens (Stal.)] incidence on rice [Oryza sativa (L.)]. J Sci Ind Res 69:818–822

    Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Zhou X, Harrington R et al (1995) Effects of temperature on aphid phenology. Glob Chang Biol 1(4):303–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Reddy, P.P. (2015). Impacts on Insect and Mite Pests. In: Climate Resilient Agriculture for Ensuring Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2199-9_7

Download citation

Publish with us

Policies and ethics