Skip to main content

Agriculture as a Source of GHGs

  • Chapter
  • First Online:
Book cover Climate Resilient Agriculture for Ensuring Food Security

Abstract

Agricultural activities – the cultivation of crops and livestock for food – contribute to emissions in a variety of ways. Various management practices for agricultural soils can lead to production and emission of nitrous oxide (N2O). Several activities that can contribute to N2O emissions from agricultural lands range from fertilizer application to methods of irrigation and tillage. Management of agricultural soils accounts for over half of the emissions from the agriculture sector.

Livestock, especially cattle, produce methane (CH4) as part of their digestion. This process is called enteric fermentation, and it represents almost one-third of the emissions from the agriculture sector.

The way in which manure from livestock is managed also contributes to CH4 and N2O emissions. Manure storage methods and the amount of exposure to oxygen and moisture can affect how these greenhouse gases are produced. Manure management accounts for about 13 % of the total greenhouse gas emissions from the agriculture sector in the United States.

Smaller sources of emissions include rice cultivation, which produces CH4, and burning crop residues, which produce CH4 and N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem response, and global change. Annu Rev Environ Res 29:261–299

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • FAO (2001) Soil carbon sequestration for improved land management. World Soil Resources Reports No. 96. FAO, Rome, 58 pp

    Google Scholar 

  • FAO (2003) World agriculture: towards 2015/2030. An FAO perspective. FAO, Rome, 97 pp

    Google Scholar 

  • FAO (2006) Livestock’s long shadow. FAO, Rome

    Google Scholar 

  • FAO (2012) Energy-smart food at FAO: an overview. FAO, Rome

    Google Scholar 

  • FAO (2013) Greenhouse gas emissions from ruminant supply chains – a global life cycle assessment. FAO, Rome

    Google Scholar 

  • FAOSTAT (2006) FAOSTAT agricultural data. Available at http://faostat.fao.org. Accessed 26 Mar 2007

  • Foley JA, DeFries R, Asner G, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Dailey GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Policy 12:491–503

    Article  CAS  Google Scholar 

  • Garnett T (2011) Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36:23–32

    Article  Google Scholar 

  • Gerber P, Vellinga T, Opio C, Steinfeld H (2011) Productivity gains and greenhouse gas intensity in dairy systems. Livest Sci 139:100–108

    Article  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P et al (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. PNAS 107(38):16732–16737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • IPCC (2001). Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 pp

    Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. PNAS 109(18):6868–6872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mosier AR (2001) Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant Soil 228:17–27

    Article  CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE (1998) Mitigating agricultural emissions of methane. Clim Chang 40:39–80

    Article  CAS  Google Scholar 

  • Mosnier A, Havlík P, Valin H, Baker JS, Murray BC et al (2012) The net global effects of alternative U.S. biofuel mandates: fossil fuel displacement, indirect land use change, and the role of agricultural productivity growth. Nicholas Institute for Environmental Policy Solutions at Duke University, Durham

    Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65

    Article  CAS  Google Scholar 

  • PBL (Planbureau voor de Leefomgeving) (2009) Milieubalans 2009. Planbureau voor de Leefomgeving, Bilthoven. Available from http://www.pbl.nl/nl/publicaties/2009/milieubalans/

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095

    Article  CAS  Google Scholar 

  • Scholes RJ, Biggs R (2004) Ecosystem services in southern Africa: a regional assessment. CSIR, Pretoria

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  PubMed  Google Scholar 

  • Smith P (2004) Engineered biological sinks on land. In: Field CB, Raupach MR (eds) The global carbon cycle. Integrating humans, climate, and the natural world, SCOPE 62. Island Press, Washington, DC, pp 479–491

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2007) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:doi:10.1098/rstb.2007.2184

  • Strassburg BBN, Rodrigues ASL, Gusti M, Balmford A, Fritz A, Obersteiner M, Turner RK, Brooks TM (2012) Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat Clim Chang 2:350–355

    Article  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • USDA (2011) USDA agricultural projections to 2020. United States Department of Agriculture (USDA), Washington, DC.(Available from http://www.usda.gov/oce/commodity/archive_projections/USDAAgriculturalProjections2020.pdf

  • US-EPA (2006a) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. United States Environmental Protection Agency, Washington, DC. EPA 430-R-06-003. Available from http://www.epa.gov/nonco2/econ-inv/downloads/GlobalAnthroEmissionsReport.pdf

  • US-EPA (2006b) Global mitigation of non-CO2 greenhouse gases. United States Environmental Protection Agency, Washington, DC. EPA 430-R-06-005. Available from http://www.epa.gov/nonco2/econ-inv/downloads/GlobalMitigationFullReport.pdf

  • US-EPA (2011) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030 EPA 430-D-11-003. U.S. Environmental Protection Agency, Office of Atmospheric Programs, Climate Change Division, Washington, DC

    Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:738–739

    Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222

    Article  Google Scholar 

  • Wang B, Neue H, Samonte H (1997) Effect of cultivar difference on methane emissions. Agric Ecosyst Environ 62:31–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Reddy, P.P. (2015). Agriculture as a Source of GHGs. In: Climate Resilient Agriculture for Ensuring Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2199-9_3

Download citation

Publish with us

Policies and ethics