Skip to main content

Climate Change Mitigation

  • Chapter
  • First Online:
  • 2445 Accesses

Abstract

A variety of options exists for the mitigation of GHG emissions in agriculture. The most prominent options are improved crop and grazing land management (e.g., improved agronomic practices, nutrient use, tillage, and residue management), restoration of organic soils that are drained for crop production, and restoration of degraded lands. Lower but still significant mitigation is possible with improved water and rice management; set-asides, land-use change (e.g., conversion of cropland to grassland) and agro-forestry as well as improved livestock and manure management. Emissions from livestock production can be reduced through improved nutrition and better management of manure. In addition, crop- and pasturelands can sequester significant amounts of carbon and therefore contribute to offsetting emissions from other sources, while improving soil quality and health. Many mitigation opportunities use current technologies and can be implemented immediately, but technological development will be a key driver ensuring the efficacy of additional mitigation measures in the future. GHG emissions could also be reduced by substituting fossil fuels with energy produced from agricultural feedstocks (e.g., crop residues, dung, energy crops), which would be counted in sectors using the energy.

Overall, the outlook for GHG mitigation in agriculture suggests that there is significant potential. Current initiatives suggest that synergy between climate change policies, sustainable development, and improvement of environmental quality will likely lead the way forward to realize the mitigation potential in this sector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrol IP, Gupta RK, Malik RK (eds) (2005) Conservation agriculture: status and prospects. Centre for Advancement of Sustainable Agriculture, New Delhi, 242 pp

    Google Scholar 

  • Achtnich C, Bak F, Conrad R (2005) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65–72

    Google Scholar 

  • Adhya TK, Pathnaik P, Satpathy SN, Kumarswamy S, Sethunathan N (1998) Influence of phosphorus application on methane emission and production in flooded paddy soils. Soil Biol Biochem 30:177–181

    CAS  Google Scholar 

  • Aggarwal A (2007) Monitoring of carbon sequestration through micro propagated bamboo plantation in Himalayan region, pp 1–7 (Unpublished)

    Google Scholar 

  • Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, Durand-Tardif M, Farquhar GD, Godbold DL, Hendrey GR, Hickler T, Kaduk J, Karnosky DF, Kimball BA, Körner C, Koornneef M, Lafarge T, Leakey ADB, Lewin KF, Long SP, Manderscheid R, McNeil DL, Mies TA, Miglietta F, Morgan JA, Nagy J, Norby RJ, Norton RM, Percy KE, Rogers A, Soussana JF, Stitt M, Wiegel HJ, White JW (2008) Next generation of elevated CO2 experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31:1317–1324

    CAS  PubMed  Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    CAS  Google Scholar 

  • Babu JY, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 42:532–554

    Google Scholar 

  • Berg W, Pazsiczki I (2006) Mitigation of methane emissions during manure storage. Int Congr Ser 1293:213–216

    CAS  Google Scholar 

  • Beringer J, Hutley LB, Tapper NJ, Coutts A, Kerley A, O’Grady AP (2003) Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int J Wildland Fire 12:333–340

    Google Scholar 

  • Bhatia A, Sasmal S, Jain N, Pathak H, Kumar R, Singh A (2010) Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric Ecosyst Environ 136(3–4):247–253

    CAS  Google Scholar 

  • Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335

    Google Scholar 

  • Bollag JM, Czlonkowski ST (1973) Inhibition of methane formation in soil by various nitrogen containing compounds. Soil Biol Biochem 5:673–678

    CAS  Google Scholar 

  • Brandjes PJ, de Wit J, Van der Meer HG (1996) Environmental impact of animal manure management. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/WAIRDOCS/LEAD/X6113E/x6113e00.htm#Contents

  • Bronson KF, Mosier AR (1991) Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide methane and carbon dioxide emissions from flooded rice. Biol Fertil Soils 11:116–120

    CAS  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors and urease inhibitors. Biol Fertil Soils 17:263–268

    CAS  Google Scholar 

  • Brookes G, Barfoot P (2009) GM crops: global socio-economic and environmental impacts 1996–2007. PG Economics Ltd, Dorchester

    Google Scholar 

  • Brown P (2005) Frozen assets. The Guardian. UK. Retrieved January 22 2008

    Google Scholar 

  • Brown LR (2008) Introduction. In: Goddard T, Zoebisch MA, Gan YT, Ellis W, Watson A, Sombatpanit S (eds) Zero-till farming systems, Special publication no 3. World Association of Soil and Water Conservation, Bangkok, pp 3–6

    Google Scholar 

  • CAST (2004) Climate change and greenhouse gas mitigation: challenges and opportunities for agriculture. Paustian K, Babcock B (Cochairs) Report 141, Council for Agricultural Science and Technology Report 141, Ames

    Google Scholar 

  • Cerri CC, Bernoux M, Cerri CEP, Feller C (2004) Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use Manag 20:248–254

    Google Scholar 

  • Chadwick DR (2005) Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos Environ 39:787–799

    CAS  Google Scholar 

  • Chan KY, Zhihong X (2009) Biochar: nutrient properties and their environment. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, Stirling, pp 67–84

    Google Scholar 

  • Chan KY, Conyers MK, Li GD, Helyar KR, Poile G, Oats A, Barchia IM (2011) Soil carbon dynamics under different cropping and pasture management in temperate Australia: results of three long term experiments. Soil Res 49:320–328

    Google Scholar 

  • Church DC (1988) Digestive physiology and nutrition of ruminants. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • CIMMYT (2010) Resource conserving technologies in South Asia: frequently asked question, Technical Bulletin. CIMMYT. Series: New Delhi, 40 pp

    Google Scholar 

  • Cohen JE (2003) Human population: the next half century. Science 302:1172–1175

    CAS  PubMed  Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355

    Google Scholar 

  • Conant RT, Paustian K, Del Grosso SJ, Parton WJ (2005) Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutr Cycl Agroecosyst 71:239–248

    CAS  Google Scholar 

  • Cotta MA, Whitehead TR, Rasmussen MA (1997) Survival of the recombinant Bacteroides thetaiotaomicron strain BTX in vitro rumen incubations. Appl Microbiol 82:743–750

    CAS  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    CAS  Google Scholar 

  • Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res 41:165–195

    CAS  Google Scholar 

  • Das K, Baruah KK (2008) Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa L.) plant. Physiol Plant 134:303–312

    CAS  PubMed  Google Scholar 

  • De Datta SK (1986) Technology development and the spread of direct-seeded flooded rice in southeast Asia. Exp Agric 22(4):417–426

    Google Scholar 

  • Demeyer H (1967) The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochimica et Biophysica Acta (BBA) – Lipid Lipid Metab 137(6):484–497

    CAS  Google Scholar 

  • Denier van der Gon HAC, Neue HU (1995) Influence of organic matter incorporation in the methane emission from a wetland rice field. Glob Biogeochem Cycles 9:11–22

    CAS  Google Scholar 

  • Derner JD, Boutton TW, Briske DD (2006) Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 280:77–90

    CAS  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, KögelKnabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Tillage Res 81:87–95

    Google Scholar 

  • Ding XZ (2007) Effect of tannic acid on in vitro rumen fermentation characteristics and methane emission of sheep. Dissertation, Gansu Agriculture University (in Chinese)

    Google Scholar 

  • Dinnes DL (2004) Assessment of practices to reduce nitrogen and potassium non-point source pollution of Iowa’s surface waters. Iowa Department of Natural Resources, Des Moines

    Google Scholar 

  • Dixit S, Prasad JVNS, Raju BMK, Venkateswarlu B (2010) Towards a carbon-neutral rural India. Part 1 challenges and opportunities in agriculture. India infrastructure report, Oxford University Press, New Delhi, pp 393–406

    Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agrofor Syst 31:99–116

    Google Scholar 

  • Dong H, Yue L, Xiuping T, XiaoPei P (2008) China greenhouse gas emissions from agricultural activities and its mitigation strategy. Trans CSAE 24(10):269–273 (in Chinese)

    Google Scholar 

  • Drury CF, Yang XM, Reynolds WD, McLughlin NB (2008) Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat. Can J Soil Sci 88(2):163–174

    CAS  Google Scholar 

  • Ebeling J, Yasue M (2008) Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits. Philos Trans R Soc B Biol Sci 363(1498):1917–1924

    Google Scholar 

  • Eidman VR (2005) Agriculture as a producer of energy. In: Outlaw JL, Collins KJ, Duffield JA (eds) Agriculture as a producer and consumer of energy. CABI Publishing, Cambridge, MA, pp 30–67

    Google Scholar 

  • EPA (2010) Inventory of US greenhouse gas emissions and sinks: 1990–2008. United States Environmental Protection Agency. Document can be found at: http://www.epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010-Report.pdf

  • Fan X, Dong HM, Han LJ (2006) Experimental study on the factors affecting methane emission of beef cattle. Trans CSAE 22:182–197 (in Chinese)

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: key findings. FAO, Rome. Available at: http://foris.fao.org/static/data/fra2010/KeyFindings-en.pdf

  • FAOSTAT (2006) FAOSTAT agricultural data. Available at: http://faostat.fao.org/. Accessed 26 Mar 2007

  • Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    PubMed  Google Scholar 

  • Fisher MJ, Rao IM, Ayarza MA, Lascano CE, Sanz JI, Thomas RJ, Vera RR (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238

    Google Scholar 

  • Galloway JN (2003) The global nitrogen cycle. Treatise Geochem 8:557–583

    Google Scholar 

  • Gonzalez-Avalos E, Ruiz-Suarez LG (2001) Methane emission factors from cattle in Mexico. Bioresour Technol 80:63–71

    CAS  PubMed  Google Scholar 

  • Goose RJ, Johnson BE (1993) Effect of urea pellet size and dicyandiamide on residual ammonium in field microplots. Commun Soil Sci Plant Anal 24:397–409

    Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    CAS  PubMed  Google Scholar 

  • Guo T (1996) Straw husbandry. Shanghai Science and Technology Press, Shanghai (in Chinese)

    Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8(4):345–360

    Google Scholar 

  • Hossain MF, Salam MA, Uddin MR, Pervez Z, Sarkar MAR (2002) A comparison study of direct seeding versus transplanting method on the yield of aus rice. Pak J Agron 1:86–88

    Google Scholar 

  • Huang M, Zou Y, Jiang P, Xia B, Feng Y, Mo Y (2012) Effect of tillage on soil and crop properties of wet-seeded flooded rice. Field Crop Res 129:28–38

    Google Scholar 

  • Hultgreen G, Leduc P (2003) The effect of nitrogen fertilizer placement, formulation, timing, and rate on greenhouse gas emissions and agronomic performance. Saskatchewan Department of Agriculture and Food. Final report project no. 5300G, ADF#19990028. Regina, Saskatchewan, Canada

    Google Scholar 

  • IEA (2008) Energy technology perspectives – scenarios and strategies to 2050. International Energy Agency, Paris

    Google Scholar 

  • IEA (2009) The impact of the financial and economic crisis on global energy investment. IEA background paper for the G-8 Energy Ministers meeting in Rome, 24–25 May 2009. Available at: www.g8energy2009.it/pdf/IEA_Paper_forpercent20G8-Impact_of_the_crisis_on_energy_investment.pdf

  • IGUTEK (2011) Agroforestry Available at: http://igutek.scripts.mit.edu/terrascope/?page=Agroforestry

  • IPCC (2000) IPCC good practice guidance and uncertainty management in national greenhouse gas inventories. Chapter 4: IPCC National Greenhouse Gas Inventories Program Technical Support Unit, Kanagaw, Japan

    Google Scholar 

  • IPCC (2007a) Climate change 2007: synthesis report, summary for policymakers. Available from: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.Pdf

  • IPCC (2007b) Climate change 2007 – impacts, adaptation and vulnerability. Contribution of Working Group to the fourth assessment report of the IPCC. Available from: http://www.ipcc.ch/ipccreports/ar4-wg2.htm

  • IPCC (2007c) Agriculture. In: Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IRRI (2002) Potentials of water-saving technologies in rice production: an inventory and synthesis of options at the farm level. Available at: http://www.iwmi.cgiar.org/assessment/FILES/word/proposals/Project%20Prop

  • IRRI (2009) Every drop counts. Rice Today 8(3):16–19

    Google Scholar 

  • Jackson RB, Banner JL, Pockman WT, Walls DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    CAS  PubMed  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    CAS  Google Scholar 

  • Joblin KN, Campbell GP, Richardson AJ, Stewart CS (1989) Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens. Lett Appl Microbiol 19:195–197

    Google Scholar 

  • Kimble JM, Rice CW, Reed D, Mooney S, Follett RF, Lal R (2007) Soil carbon management, economic, environmental and social benefits. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Kimura M, Asai K, Watanabe A, Murase J, Kuwatsuka S (1992) Suppression of methane fluxes from flooded paddy soil with rice plants by foliar spray of nitrogen fertilizers. Soil Sci Plant Nutr 38:735–740

    CAS  Google Scholar 

  • Ko JY, Kang HW (2000) The effects of cultural practices on methane emission from rice fields. Nutr Cycl Agroecosyst 58:311–314

    Google Scholar 

  • Kookana RS, Sarmah AS, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    CAS  Google Scholar 

  • Korontzi S, Justice CO, Scholes RJ (2003) Influence of timing and spatial extent of savannah fires in southern Africa on atmospheric emissions. J Arid Environ 54:395–404

    Google Scholar 

  • Ladha JK, Kumar V, Alam M, Sharma S, Gathala M, Chandna P, Balaubramanian V, Ladha JK, Kumar V, Alam M, Sharma S, Gathala M, Chandna P, Balaubramanian V (2009) Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice-wheat system in South Asia. In: Ladha JK, Erenstein O, Yadvinder Singh F, Hardy B (eds) Integrated crop and resource management in the rice-wheat system of South Asia. International Rice Research Institute, Los Baños, pp 69–108

    Google Scholar 

  • Lal R (1998) Land use and soil management effects on soil organic matter dynamics on Alfisols in Western Nigeria. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press LLC, Boca Raton, pp 109–126

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    CAS  PubMed  Google Scholar 

  • Lal R (2005) Carbon sequestration and climate change with special reference to India. In: Proceedings of international conference on soil, water and environmental quality-issues and strategies. Indian Society of Soil Science, Division of Soil Science and Agricultural Chemistry, IARI, New Delhi, pp 295–302

    Google Scholar 

  • Lal R, Kimble JM, Follet RF, Cole CV (1998a) The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea

    Google Scholar 

  • Lal R, Kimble JM, Follett RF, Stewart BA (1998b) Management of carbon sequestration in soil. CRC Press LLC, Boca Ration

    Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    CAS  PubMed  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystem – a review. Mitig Adapt Strateg Glob Chang 11:403–427

    Google Scholar 

  • Li Wen-bin, Yan Xiao-bo, Xu Jian-feng, Huang Jian-wei, Guo Li-na, Wang Jin (2010) Report on fattening cattle fed with corn stalk processed by different methods. China Cattle Sci 36(16–18):27 (in Chinese)

    Google Scholar 

  • Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Tillage Res 83:25–52

    Google Scholar 

  • Lindau CW, Bollich PK, DeLaune RD, Mosier AR, Bronson KF (1993) Methane mitigation in flooded Louisiana rice fields. Biol Fertil Soils 15:174–178

    CAS  Google Scholar 

  • Liu X, Mosier A, Halvorson A, Zhang F (2006) The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil 280(1):177–188

    CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    CAS  PubMed  Google Scholar 

  • Lovett DK, O’Mara FP (2002) Estimation of enteric methane emissions originating from the national livestock beef herd: a review of the IPCC default emission factors. Tearmann 2:77–83

    Google Scholar 

  • Lovett D, Lovell S, Stack L, Callan J, Finlay M, Connolly J, O’Mara FP (2003) Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest Prod Sci 84:135–146

    Google Scholar 

  • Lovett DK, Shalloo L, Dillon P, O’Mara FP (2006) A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agric Syst 88:156–179

    Google Scholar 

  • Lueders T, Friedrich MW (2002) Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol 68(5):2484–2494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machado PLOA, Freitas PL (2004) No-till farming in Brazil and its impact on food security and environmental quality. In: Lal R, Hobbs PR, Uphoff N, Hansen DO (eds) Sustainable agriculture and the international rice-wheat system. Marcel Dekker, New York, pp 291–310

    Google Scholar 

  • Mae-Wan Ho, Lim Li Ching (2008) Mitigating climate change through organic agriculture and localized food systems. ISIS report 31/1/08. http://www.i-sis.org.uk/mitigatingClimateChange.php.

  • Marland G, McCarl BA, Schneider UA (2001) Soil carbon: policy and economics. Clim Chang 51:101–117

    Google Scholar 

  • McBride BC, Wolfe RS (1971) Inhibition of methanogenesis by DDT. Nature 234:551

    CAS  PubMed  Google Scholar 

  • McTaggart IP, Clayton H, Smith KA (1994) Nitrous oxide flux from fertilized grassland: strategies for reducing emissions. In: van Ham J, Jassen LJHM, Swart RJ (eds) Non-CO2 greenhouse gases. Kluwer, Dordrecht, pp 421–426

    Google Scholar 

  • MDA (2011) Conservation practices, Minnesota conservation funding guide. Minnesota Department of Agriculture. Available at: http://www.mda.state.mn.us/protecting/conservation/practices/constillage

  • Megraw SR, Knowles R (1987) Methane consumption and production in a cultivated humisol. Biol Fertil Soils 5:56–60

    CAS  Google Scholar 

  • Melillo JM, John MR, David WK, Angelo C, Timothy WC, Sergey P, Benjamin SF, Xiaodong W, Andrei PS, Adam C (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399

    CAS  PubMed  Google Scholar 

  • Metra-Corton TM, Bajita JB, Grospe FS, Pamplona RR, Asis CA, Wassmann R, Lantin RS (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr Cycl Agroecosyst 58:37–53

    Google Scholar 

  • Millar N, Robertson GP, Grace PR, Gehl RJ, Hoben JP (2010) Nitrogen fertilizer management for nitrous oxide mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig Adapt Strateg Glob Chang 15:185–204

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human wellbeing: current state and trends. Findings of the condition and trends working group. Millennium Ecosystem Assessment series, Island Press, Washington, DC, 815 pp

    Google Scholar 

  • Mimura N et al (2007) Chapter 16: small islands: executive summary. In: Parry ML et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Minami K (1995) The effect of nitrogen fertilizer use and other practices on methane emission from flooded rice. Fertil Res 40:71–84

    CAS  Google Scholar 

  • Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95(3):255–257

    CAS  PubMed  Google Scholar 

  • Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170

    CAS  Google Scholar 

  • Muchovej RM (2001) Importance of mycorrhizae for agricultural crops. IFAS extension bulletin SS-AGR-170, University of Florida, Gainesville, FL, USA, 5 pp

    Google Scholar 

  • Na RH (2010) Effects of diet composition on methane and nitrogen emissions from lactating cattle. Dissertation, China Academy of Agriculture Sciences, Beijing (in Chinese)

    Google Scholar 

  • Na Renhua, Dong Hong-min, Tao Xiu-ping, Ma Rui-juan, Xi Jia-lin (2010) Effects of diet composition on in vitro digestibility and methane emissions of cows. J Agroenviron Sci 29(8):1576–1581 (in Chinese)

    Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson RJ, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. Available at: http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter9.pdf

  • Nelson DW, Huber D (2001) Nitrification inhibitors for corn production. National Corn Handbook NCH-55, Iowa State University, Ames, IA, USA, 6 pp

    Google Scholar 

  • Nelson GC, Robertson G, Msangi S, Zhu T, Liao X, Jawagar P (2009) Greenhouse gas mitigation: issues for Indian agriculture. International Food Policy Research Institute, Washington, DC, 60 pp

    Google Scholar 

  • Niggli U, Fliebach A, Hepperly P, Scialabba N (2009) Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems, Rev. 2. FAO, Rome. Available at: ftp.fao.org/docrep/fao/010/ai781e/ai781e00.pdf

    Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65

    CAS  Google Scholar 

  • Parashar DC, Bhattacharya S (2002) Considerations for methane mitigation from Indian paddy fields. Indian J Radio Space Phys 31:369–375

    CAS  Google Scholar 

  • Patel GB, Agnew BJ, Dicaire CJ (1991) Inhibition of pure cultures of methanogens by benzene ring compounds. Appl Environ Microbiol 57(10):2969–2974

    Google Scholar 

  • Pathak H (2010) Mitigating greenhouse gas and nitrogen loss with improved fertilizer management in rice: quantification and economic assessment. Nutr Cycl Agroecosyst 87:443–454

    CAS  Google Scholar 

  • Pathak H, Byjesh K, Chakrabarti B, Aggarwal PK (2011) Potential and cost of carbon sequestration in Indian agriculture: estimates from long-term field experiments. Field Crop Res 120(1):102–111

    Google Scholar 

  • Paustion K, Cole CV, Sauerbeck D, Sampson N (1995) CO2 mitigation by agriculture: an overview. Clim Chang 40(1):135–162

    Google Scholar 

  • Peat-Portal Assessment Report (2008) Assessment on peatlands, biodiversity and climate change. Document can be found online at: http://www.peat-portal.net/index.cfm?&menuid=123&parentid=113

  • Petersen SO, Ambus P (2006) Methane oxidation in pig and cattle slurry storages, and effects of surface crust moisture and methane availability. Nutr Cycl Agroecosyst 74:1–11

    Google Scholar 

  • Petersen SO, Regina K, Pollinger A, Rigler E, Valli L, Yamulki S, Esala M, Fabbri C, Syvasalo E, Vinther FP (2006) Nitrous oxide emissions from organic and conventional crop rotations in five European countries. Agric Ecosyst Environ 112(2):200–206

    CAS  Google Scholar 

  • Powlson DS, Goulding KWT, Willison TW, Webster CP, Hutsch BW (1997) The effect of agriculture on methane oxidation in soil. Nutr Cycl Agroecosyst 49:59–70

    CAS  Google Scholar 

  • Pratt K, Moran D (2010) Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy 34(8):1149–1158

    CAS  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841

    PubMed  Google Scholar 

  • Rath AK, Swain B, Ramakrishnan B, Panda D, Adhya TK, Rao VR, Sethunathan N (1999) Influence of fertilizer management and water regime on methane emission from tropical rice fields. Agric Ecosyst Environ 76:99–107

    CAS  Google Scholar 

  • Regalbuto JR (2009) Cellulosic biofuels – got gasoline? Science 325:822–824

    PubMed  Google Scholar 

  • Rehman A (2007) Zero tillage technology for rice and wheat crops. Available at: www.archives.dawn.com

  • Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science 329:793–796

    CAS  PubMed  Google Scholar 

  • Richards KR, Stokes C (2004) A review of forest carbon sequestration cost studies: a dozen years of research. Clim Chang 63:1–48

    Google Scholar 

  • Richter B (2004) Using ethanol as an energy source. Science 305:340

    CAS  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Roberts KG, Brent AG, Stephen J, Norman RS, Johannes L (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833

    CAS  PubMed  Google Scholar 

  • Robertson GP (2004) Abatement of nitrous oxide, methane and other non-CO2 greenhouse gases: the need for a systems approach. In: Field CB, Raupach MR (eds) The global carbon cycle. Integrating humans, climate, and the natural world, SCOPE 62. Island Press, Washington, DC, pp 493–506

    Google Scholar 

  • Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49–50

    CAS  PubMed  Google Scholar 

  • Rotenberg R, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454

    CAS  PubMed  Google Scholar 

  • Samuchit (2010) Biomass fueled household energy devices. Retrieved December 19, 2011 from http://www.samuchit.com/index.php?option=com_content&view=article&id=1&Itemid=3#sampada%20stove

  • Satavik (2011) Vermicomposting. Available at: http://www.satavic.org/vermicomposting.htm

  • Scharlemann JPW, Laurance WF (2008) How green are biofuels? Science 319:43–44

    CAS  PubMed  Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095

    CAS  Google Scholar 

  • Scholes RJ, van der Merwe MR (1996) Sequestration of carbon in savannas and woodlands. Environ Prof 18:96–103

    Google Scholar 

  • Schroeder WR (1995) Improvement of conservation trees and shrubs. PFRA Shelterbelt Centre Supplementary report #95-1. PFRA Shelterbelt Centre, Indian Head, 42 p

    Google Scholar 

  • Setyanto P, Mulyadi, Zaini Z (1997) Emisi gas N2O dari beberapa sumber pupuk nitrogen di lahan sawah tadah hujan. Jurnal Penelitian Tanaman Pangan 16:14–18

    Google Scholar 

  • Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and zero-tillage systems. J Am Soil Sci Soc 63:1350–1358

    CAS  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutr Cycl Agroecosyst 48:139–153

    CAS  Google Scholar 

  • Smith P, Andrén O, Karlsson T, Perälä P, Regina K, Rounsevell M, Van Wesemael B (2005) Carbon sequestration potential in European croplands has been overestimated. Glob Chang Biol 11:2153–2163

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    CAS  Google Scholar 

  • Smith P, Davies CA, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey RM, McNamara NP, Powlson D, Cowie A, van Noordwijk M, Davis SC, Richter DD, Kryzanowski L, van Wijk MT, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya TK, Braimoh AK (2012) Towards an integrated global framework to assess the impacts of land use and management change on soil carbon, current capability and future vision. Glob Chang Biol 18:2089–2101

    Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL (2007) Greenhouse gas emissions form cropping systems and the influence of fertilizers management – a literature review. International Plant Nutrition Institute, Norcross

    Google Scholar 

  • Soussana JF, Loiseau P, Viuchard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20:219–230

    Google Scholar 

  • Spatari S, Zhang Y, Maclean HL (2005) Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ Sci Technol 39:9750–9758

    CAS  PubMed  Google Scholar 

  • Sprott GD, Jarrell KL, Shaw KM, Knowles R (1982) Acetylene as an inhibitor of methanogenic bacteria. J Gen Microbiol 128:2453–2462

    CAS  Google Scholar 

  • Strengers B, Leemans R, de Eickhout B, Vries B, Bouwman L (2004) The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model. Geo J 61:381–393

    Google Scholar 

  • Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V (2009) Role of arbuscular mycorrhizal fungus (Glomus intraradices) – (fungus aided) in zinc nutrition of maize. J Agric Biotechnol Sustain Dev 1(1):029–038

    CAS  Google Scholar 

  • Suddick EC, Scow KM, Horwath WR, Jackson LE, Smart DR, Mitchell J, Six J (2010) The potential for California agricultural crop soils to reduce greenhouse gas emissions: a holistic evaluation. Adv Agron 107:123–162

    CAS  Google Scholar 

  • Sudha P, Ramprasad V, Nagendra MDV, Kulkarni HD, Ravindranath NH (2007) Development of an agroforestry carbon sequestration project in Khammam district, India. Mitig Adapt Strateg Glob Chang 12(6):1131–1152

    Google Scholar 

  • Sun DC, Zhao ZL, Wei ML (2008) Effect of different concentrate to forage ratio of TMR to dairy cattle rumen indices. Feed Res 10:47–50 (in Chinese)

    Google Scholar 

  • Takimoto A, Nair PKR, Alavalapati JRR (2008) Socioeconomic potential of carbon sequestration through agroforestry in the West African Sahel. Mitig Adapt Strateg Glob Chang 13(7):745–761

    Google Scholar 

  • Tenuta M, Beauchamp EG (2003) Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam. Can J Soil Sci 83:521–532

    CAS  Google Scholar 

  • UNDP (2008) Fighting climate change: human solidarity in a divided world. Human development report, United Nations Development Programme New York

    Google Scholar 

  • UNFCCC (2008) National adaptation programmes of action, summary of projects on water resources identified in submitted NAPAs as of September 2008, United Nations

    Google Scholar 

  • Uprety DC, Baruah KK, Borah L (2011) Methane in rice agriculture. J Sci Ind Res 70(6):401–411

    CAS  Google Scholar 

  • US EPA (2005) Greenhouse gas mitigation potential in US forestry and agriculture. Washington, DC, EPA 430-R-006, November, 150 pp

    Google Scholar 

  • US-EPA (2006) Global mitigation of non-CO2 greenhouse gases. United States Environmental Protection Agency, EPA 430-R-06-005, Washington, DC. Available at: http://www.epa.gov/nonco2/econ-inv/downloads/GlobalMitigationFullReport.pdf

  • Van Wilgen BW, Govender N, Biggs HC, Ntsala D, Funda XN (2004) Response of savanna fire regimes to changing fire-management policies in a large African National Park. Conserv Biol 18:1533–1540

    Google Scholar 

  • Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in south Asia: carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456

    CAS  PubMed  Google Scholar 

  • Venterea RT, Burger M, Spokas KA (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J Environ Q 34:1467–1477

    CAS  Google Scholar 

  • Verma MP, Singh JP (2009) Zero tillage technology is an alternate method of sowing- a case study. Available at: http://www.climatetechwiki.org/technology/conservation-tillage

  • Wang ZY, Xu YC, Li Z, Guo YX, Wassmann R, Neue HU, Lantin RS, Buendia LV, Ding YP, Wang ZZ (2000) Methane emissions from irrigated rice fields in northern China (Beijing). Nutr Cycl Agroecosyst 58(1/3):55–56

    Google Scholar 

  • Wang Jinli, Yang Ruie, Gao Zhaoping (2008) Comparison of the effects of different treatments to maize straw on fattenning beef cattle. J Shanxi Agric Univ 28(3):320–324 (in Chinese)

    Google Scholar 

  • Wassmann R, Pathak H (2007) Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II. Cost- benefit assessment for different technologies, regions and scales. Agric Syst 94:826–840

    Google Scholar 

  • Wassmann R, Lantin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycl Agroecosyst 58:23–36

    CAS  Google Scholar 

  • Weerakoon WMW, Mutunayake MMP, Bandara C, Rao AN, Bhandari DC, Ladha JK (2011) Direct-seeded rice culture in Sri Lanka: lessons from farmers. Field Crop Res 121(1):53–63

    Google Scholar 

  • Weiske A, Wabitsch A, Olesen JE (2006) Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. Agric Ecosyst Environ 112:221–232

    CAS  Google Scholar 

  • Woomer PL, Palm CA, Qureshi JN, Kotto-Same J (1998) Carbon sequestration and organic resource management in African smallholder agriculture. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Management of carbon sequestration in soil. CRC Press, Boca Raton, pp 153–173

    Google Scholar 

  • Xu S, Hao X, Stanford K, McAllister T, Larney FJ, Wang J (2007) Greenhouse gas emissions during co-composting of cattle mortalities with manure. Nutr Cycl Agroecosyst 78:177–187

    Google Scholar 

  • Yang SR (2000) Reducing methane emission of cattle from biology prospect. Agroenviron Dev 1:47–48 (in Chinese)

    Google Scholar 

  • Youkhana A, Idol T (2009) Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol Biochem 41:2527–2534

    CAS  Google Scholar 

  • Yvette JW, Popovski S, Rea SM, Skillman LC, Toovey AF, Northwood KS, Wright AD (2009) A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl Environ Microbiol 75:1860–1866

    Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley Interscience, New York, pp 1–38

    Google Scholar 

  • Zou J, Huang Y, Jiang J, Zheng X, Sass RL (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycles 19 GB2021. doi:10.1029/2004GB002401

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Reddy, P.P. (2015). Climate Change Mitigation. In: Climate Resilient Agriculture for Ensuring Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2199-9_13

Download citation

Publish with us

Policies and ethics