Skip to main content

Synthetic (Organic) Nanoparticles Induced Lung Cancer Diagnosis and Therapy

  • Chapter
  • First Online:
Nanoparticles in Lung Cancer Therapy - Recent Trends

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 744 Accesses

Abstract

Natural or semisynthetic nanoparticles often degrade too fast and are cleared by the hepatic portal system before they effectively deliver therapeutic macromolecules especially to lung cancer cells. In an attempt to prolong shelf life of nanovectors in the human bloodstream for enhanced therapeutic efficacy of anticancer agents against cancer cells, nanoparticles are prepared synthetically. This chapter focuses on different synthetically prepared organic nanomaterials which have shown successful preclinical results in the treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  2. Jung J, Park SJ, Chung HK, Kang HW, Lee SW, Seo MH, Park HJ, Song SY, Jeong SY, Choi EK (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:e77–e83

    Article  CAS  Google Scholar 

  3. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572

    Article  CAS  Google Scholar 

  4. Benfer M, Kissel T (2012) Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur J Pharm Biopharm 80:247–256

    Article  CAS  Google Scholar 

  5. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  6. Zhou X, Li X, Gou M, Qiu J, Li J, Yu C, Zhang Y, Zhang N, Teng X, Chen Z, Luo C, Wang Z, Liu X, Shen G, Yang L, Qian Z, Wei Y, Li J (2011) Antitumoral efficacy by systemic delivery of heparin conjugated polyethylenimine–plasmid interleukin-15 complexes in murine models of lung metastasis. Cancer Sci 102:1403–1409

    Article  CAS  Google Scholar 

  7. Jere D, Jiang HL, Kim YK, Arote R, Choi YJ, Yun CH, Cho MH, Cho CS (2009) Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int J Pharm 378:194–200

    Article  CAS  Google Scholar 

  8. Rajagopal K, Christian DA, Harada T, Tian A, Discher DE ()2010 Polymersomes and wormlike micelles made fluorescent by direct modifications of block copolymer amphiphiles. Int J Polym Sci 10

    Google Scholar 

  9. Kim Y, Dalhaimer P, Christian DA, Discher DE (2005) Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 16:S1–S8

    Article  Google Scholar 

  10. Cai S, Vijayan K, Cheng D, Lima E, Discher D (2007) Micelles of different morphologies-advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res 24:2099–2109

    Article  CAS  Google Scholar 

  11. Van Domeselaar GH, Kwon GS, Andrew LC, Wishart DS (2003) Application of solid phase peptide synthesis to engineering PEO-peptide block copolymers for drug delivery. Colloids Surf B 30:323–334

    Article  Google Scholar 

  12. Lee J, Cho EC, Cho K (2004) Incorporation and release behavior of hydrophobic drug in functionalized poly(D, L-lactide)-block-poly(ethylene oxide) micelles. J Controlled Release 94:323–335

    Article  CAS  Google Scholar 

  13. Geng Y, Discher DE (2006) Visualization of degradable worm micelle breakdown in relation to drug release. Polymer 47:2519–2525

    Article  CAS  Google Scholar 

  14. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  CAS  Google Scholar 

  15. Discher BM, Bermudez H, Hammer DA, Discher DE, Won YY, Bates FS (2002) Cross-linked polymersome membranes: vesicles with broadly adjustable properties. J Phys Chem B 106:2848–2854

    Article  CAS  Google Scholar 

  16. Ghoroghchian PP, Frail PR, Susumu K, Blessington D, Brannan AK, Bates FS, Chance B, Hammer DA, Therien MJ (2005) Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci USA 102:2922–2927

    Article  CAS  Google Scholar 

  17. Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    Article  CAS  Google Scholar 

  18. Ghoroghchian PP, Li G, Levine DH, Davis KP, Bates FS, Hammer DA, Therien MJ (2006) Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone. Macromolecules 39:1673–1675

    Article  CAS  Google Scholar 

  19. Waterhouse DN, Tardi PG, Mayer LD, Bally MB (2001) A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 24:903–920

    Article  CAS  Google Scholar 

  20. Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML, Minko T, Discher DE (2006) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharmaceutics 3:340–350

    Article  CAS  Google Scholar 

  21. Discher BM, Won Y-Y, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  CAS  Google Scholar 

  22. Bermudez H, Brannan AK, Hammer DA, Bates FS, Discher DE (2002) Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35:8203–8208

    Article  CAS  Google Scholar 

  23. Sun J, Chen X, Deng C, Yu H, Xie Z, Jing X (2007) Direct formation of giant vesicles from synthetic polypeptides. Langmuir 23:8308–8315

    Article  CAS  Google Scholar 

  24. Hong SH, Kim JE, Kim YK, Minai-Tehrani A, Shin JY, Kang B, Kim HJ, Cho CS, Chae C, Jiang HL, Cho MH (2012) Suppression of lung cancer progression by biocompatible glycerol triacrylate-spermine-mediated delivery of shAkt1. Int J Nanomed 7:2293–2306

    CAS  Google Scholar 

  25. Tan BJ, Liu Y, Chang KL, Lim BK, Chiu GN (2012) Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int J Nanomed 7:651–661

    Article  CAS  Google Scholar 

  26. Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  CAS  Google Scholar 

  27. Hari BNV, Kalaimagal K, Porkodi R, Gajula PK, Ajay JY (2012) Dendrimer: globular nanostructured materials for drug delivery. Int J PharmTech Res 4:432–451

    Google Scholar 

  28. Sampathkumar S-G, Yarema KJ (2007) Dendrimers in cancer treatment and diagnosis, nanotechnologies for the life sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  29. Goya GF, Grazu V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16

    Article  CAS  Google Scholar 

  30. Vicent MJ, Duncan R (2006) Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 24:39–47

    Article  CAS  Google Scholar 

  31. http://www.starpharma.com/news/150

  32. Rahbek UL, Nielsen AF, Dong M, You Y, Chauchereau A, Oupicky D, Besenbacher F, Kjems J, Howard KA (2010) Bioresponsive hyperbranched polymers for siRNA and miRNA delivery. J Drug Target 18:812–820

    Article  CAS  Google Scholar 

  33. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, Oberlies NH, Manikumar G, Wani MC, Grinstaff MW (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66:11913–11921

    Article  CAS  Google Scholar 

  34. Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP, He H, Minko T (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Controlled Release 140:284–293

    Article  CAS  Google Scholar 

  35. Liu J, Chu L, Wang Y, Duan Y, Feng L, Yang C, Wang L, Kong D (2011) Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomed 6:59–69

    CAS  Google Scholar 

  36. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  37. Heister E, Neves V, Tilmaciu C, Lipert K, Beltran VS, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47:2152–2160

    Article  CAS  Google Scholar 

  38. Surendiran A, Sandhiya S, Pradhan SC, Adithan C (2009) Novel applications of nanotechnology in medicine. Indian J Med Res 130:689–701

    CAS  Google Scholar 

  39. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1689–1698

    Article  CAS  Google Scholar 

  40. Bianco A, Kostarelos K, Prato M (2008) Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 5:331–342

    Article  CAS  Google Scholar 

  41. Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomed 6:705–719

    CAS  Google Scholar 

  42. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  CAS  Google Scholar 

  43. Madani SY, Tan A, Dwek M, Seifalian AM (2012) Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomed 7:905–914

    CAS  Google Scholar 

  44. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Article  CAS  Google Scholar 

  45. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170

    Article  CAS  Google Scholar 

  46. Ferro S (2002) Synthesis of diamond. J Mater Chem 12:2843–2855

    Article  CAS  Google Scholar 

  47. Liu FL, Xiao P, Fang HL, Dai HF, Qiao L, Zhang YH (2011) Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Physica E 44:367–372

    Article  CAS  Google Scholar 

  48. Murakami T, Nakatsuji H, Inada M, Matoba Y, Umeyama T, Tsujimoto M, Isoda S, Hashida M, Imahori H (2012) Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J Am Chem Soc 134:17862–17865

    Article  CAS  Google Scholar 

  49. Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185

    Article  CAS  Google Scholar 

  50. Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Mol Pharm 2:475–480

    Article  CAS  Google Scholar 

  51. Cancino J, Paino IMM, Micocci KC, Selistre-de-Araujo HS, Zucolotto V (2013) In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells. Toxicol Lett 219:18–25

    Article  CAS  Google Scholar 

  52. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bandyopadhyay, A., Das, T., Yeasmin, S. (2015). Synthetic (Organic) Nanoparticles Induced Lung Cancer Diagnosis and Therapy. In: Nanoparticles in Lung Cancer Therapy - Recent Trends. SpringerBriefs in Molecular Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2175-3_3

Download citation

Publish with us

Policies and ethics