Advertisement

Next-Generation Sequencing and Assembly of Plant Genomes

  • Basant K. Tiwary
Chapter

Abstract

Next-generation sequencing technology produces enormous volume of accurate and inexpensive sequence data in a short span of time. Three available common next-generation sequencing (NGS) platforms for genome sequencing are discussed here. The genome assembly and scaffolding algorithms are described with special emphasis on de novo assembly of short-read sequences. The biological applications of next-generation sequencing in plant sciences are covered with examples from plant genomics. An account on future prospects of this technology in plant genome analysis is discussed.

Keywords

Reference Genome Suffix Tree Illumina Genome Analyzer Popular Program Conventional Sanger Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y (2012) GenomeView: a next-generation genome browser. Nucleic Acids Res 40:e12CrossRefPubMedCentralPubMedGoogle Scholar
  2. Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. J Discrete Algorithms 2:53–86CrossRefGoogle Scholar
  3. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527CrossRefGoogle Scholar
  4. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  5. Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108CrossRefPubMedGoogle Scholar
  6. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963CrossRefPubMedCentralPubMedGoogle Scholar
  7. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, Lander ES (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12:177–189CrossRefPubMedCentralGoogle Scholar
  8. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398CrossRefPubMedGoogle Scholar
  9. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579CrossRefPubMedGoogle Scholar
  10. Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710CrossRefPubMedCentralPubMedGoogle Scholar
  11. Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056CrossRefPubMedCentralGoogle Scholar
  12. Carver T, Bohme U, Otto T, Parkhill J, Berriman M (2010) BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics 26:676–677CrossRefPubMedCentralPubMedGoogle Scholar
  13. Carver T, Harris SR, Otto TD, Berriman M, Parkhill J, McQuillan JA (2013) BamView: visualizing and interpretation of next-generation sequencing read alignments. Brief Bioinform 14:203–212CrossRefPubMedCentralPubMedGoogle Scholar
  14. Chaisson MJP, Brinja D, Pevzner PA (2009) De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res 19:336–346CrossRefPubMedCentralPubMedGoogle Scholar
  15. Conway T, Wazny J, Bromage A, Zobel J, Beresford-Smith B (2012) Gossamer—a resource-efficient de novo assembler. Bioinformatics 28:1937–1938CrossRefPubMedGoogle Scholar
  16. D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217CrossRefPubMedGoogle Scholar
  17. Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, Yun D-J, Bressan RA, Zhu J-K, Bohnert HJ et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918CrossRefPubMedCentralPubMedGoogle Scholar
  18. Dayarian A, Michael TP, Sengupta AM (2010) SOPRA: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinf 11:345CrossRefGoogle Scholar
  19. de la Bastide M, McCombie WR (2007) Assembling genomic DNA sequences with PHRAP. Curr Protoc Bioinform, Chapter 11:Unit 11.4Google Scholar
  20. Galinsky VL (2012) YOABS: yet other aligner of biological sequences—an efficient linearly scaling nucleotide aligner. Bioinformatics 28:1070–1077CrossRefPubMedGoogle Scholar
  21. Gao S, Sung WK, Nagarajan N (2011) Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J Comput Biol 18:1681–1691CrossRefPubMedCentralPubMedGoogle Scholar
  22. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877CrossRefPubMedCentralPubMedGoogle Scholar
  23. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518CrossRefPubMedCentralPubMedGoogle Scholar
  24. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100CrossRefPubMedGoogle Scholar
  25. Gritsenko AA, Nijkamp JF, Reinders MJT, de Ridder D (2012) GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics 28:1429–1437CrossRefPubMedGoogle Scholar
  26. Hahn WC, Weinberg RA (2002) Mechanisms of disease: rules for making human tumor cells. N Engl J Med 34:1593–1603CrossRefGoogle Scholar
  27. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermüller J (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502CrossRefPubMedCentralPubMedGoogle Scholar
  28. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877CrossRefPubMedCentralPubMedGoogle Scholar
  29. Huang X, Wang J, Aluru S, Yang SP, Hillier L (2003) PCAP: a whole-genome assembly program. Genome Res 13:2164–2170CrossRefPubMedCentralPubMedGoogle Scholar
  30. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefPubMedGoogle Scholar
  31. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  32. International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796CrossRefGoogle Scholar
  33. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  34. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. doi: 10.1111/tpj.12173 PubMedGoogle Scholar
  35. Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24:2395–2396CrossRefPubMedCentralPubMedGoogle Scholar
  36. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379CrossRefPubMedCentralPubMedGoogle Scholar
  37. Kim J, Larkin DM, Cai Q, Asan ZY, Ge R-L, Auvil L, Capitanu B, Zhang G, Lewin HA, Ma J (2013) Reference-assisted chromosome assembly. Proc Natl Acad Sci U S A 110:1785–1790CrossRefPubMedCentralPubMedGoogle Scholar
  38. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12CrossRefPubMedCentralPubMedGoogle Scholar
  39. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM (2008) Compressed indexing and local alignment of DNA. Bioinformatics 24:791–797CrossRefPubMedGoogle Scholar
  40. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedCentralPubMedGoogle Scholar
  41. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedCentralPubMedGoogle Scholar
  42. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595CrossRefPubMedCentralPubMedGoogle Scholar
  43. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinformatics 11:473–483CrossRefPubMedCentralPubMedGoogle Scholar
  44. Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858CrossRefPubMedCentralPubMedGoogle Scholar
  45. Li R, Li Y, Kristiansen K, Wang J (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714CrossRefPubMedGoogle Scholar
  46. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009a) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967CrossRefPubMedGoogle Scholar
  47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009b) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedCentralPubMedGoogle Scholar
  48. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272CrossRefPubMedCentralPubMedGoogle Scholar
  49. Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, Yang B, Fan W (2012) Comparison of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph. Brief Funct Genomics 11:25–37CrossRefPubMedGoogle Scholar
  50. Lin H, Zhang Z, Zhang MQ, Ma B, Li M (2008) ZOOM! Zillions of oligos mapped. Bioinformatics 24:2431–2437CrossRefPubMedCentralPubMedGoogle Scholar
  51. Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90CrossRefPubMedGoogle Scholar
  52. Ma B, Tromp J, Li M (2002) PatternHunter: faster and more sensitive homology search. Bioinformatics 18:440–445CrossRefPubMedGoogle Scholar
  53. Manske HM, Kwiatkowski DP (2009) LookSeq: a browser-based viewer for deep sequencing data. Genome Res 19:2125–2132CrossRefPubMedCentralPubMedGoogle Scholar
  54. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564CrossRefPubMedCentralPubMedGoogle Scholar
  55. McCreight EM (1976) A space-economical suffix tree construction algorithm. J ACM 23:262–272CrossRefGoogle Scholar
  56. Meek C, Patel JM, Kasetty S (2003) OASIS: an online and accurate technique for local-alignment searches on biological sequences. In: Proceedings of 29th international conference on Very Large Data Bases (VLDB 2003), Berlin, pp 910–921Google Scholar
  57. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefPubMedGoogle Scholar
  58. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRefPubMedCentralPubMedGoogle Scholar
  59. Miller J, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 14:315–327. doi: 10.1016/j.ygeno.2010.03.001 CrossRefGoogle Scholar
  60. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26:401–402CrossRefPubMedCentralPubMedGoogle Scholar
  61. Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202CrossRefPubMedGoogle Scholar
  62. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996CrossRefPubMedCentralPubMedGoogle Scholar
  63. Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li L-T, Zhang Q, Kim M-J, Schatz MC, Campbell M et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn). Genome Biol 14:R41CrossRefPubMedCentralPubMedGoogle Scholar
  64. Mullikin JC, Ning Z (2003) The phusion assembler. Genome Res 13:81–90CrossRefPubMedCentralPubMedGoogle Scholar
  65. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204CrossRefPubMedGoogle Scholar
  66. Myllykangas S, Buenrostro J, Ji HP (2011) Overview of sequencing technology platforms. In: Rodriguez-Ezpeleta N, Hackenberg M, Aransayet AM (eds) Bioinformatics for high throughput sequencing. Springer, New YorkGoogle Scholar
  67. Park PJ (2009) Chip-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680CrossRefPubMedCentralPubMedGoogle Scholar
  68. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  69. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A 98:9748–9753CrossRefPubMedCentralPubMedGoogle Scholar
  70. Pop M, Kosack DS, Salzberg SL (2004) Hierarchical scaffolding with Bambus. Genome Res 14:149–159CrossRefPubMedCentralPubMedGoogle Scholar
  71. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  72. Qiang X, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66Google Scholar
  73. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi YA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefPubMedGoogle Scholar
  74. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5(5):e1000386. doi: 10.1371/journal.pcbi.1000386 CrossRefPubMedCentralPubMedGoogle Scholar
  75. Salmela L, Mäkinen V, Välimäki N, Ylinen J, Ukkonen E (2011) Fast scaffolding with small independent mixed integer programs. Bioinformatics 27:3259–3265CrossRefPubMedCentralPubMedGoogle Scholar
  76. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedCentralPubMedGoogle Scholar
  77. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239CrossRefPubMedCentralPubMedGoogle Scholar
  78. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  79. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  80. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116CrossRefPubMedCentralPubMedGoogle Scholar
  81. Simpson JT, Durbin R (2010) Efficient construction of an assembly string graph using the FM-index. Bioinformatics 26:i367–i373CrossRefPubMedCentralPubMedGoogle Scholar
  82. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22:549–556CrossRefPubMedCentralPubMedGoogle Scholar
  83. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123CrossRefPubMedCentralPubMedGoogle Scholar
  84. Smith AD, Chung WY, Hodges E, Kendall J, Hannon G, Hicks J, Xuan Z, Zhang MQ (2009) Updates to the RMAP short-read mapping software. Bioinformatics 25:2841–2842CrossRefPubMedCentralPubMedGoogle Scholar
  85. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. doi: 10.1101/pdb.prot5384 PubMedCentralPubMedGoogle Scholar
  86. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610CrossRefPubMedCentralPubMedGoogle Scholar
  87. The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  88. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192CrossRefPubMedCentralPubMedGoogle Scholar
  89. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  90. van Bakel H, Stout J, Cote A, Tallon C, Sharpe A, Hughes T, Page J (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102CrossRefPubMedCentralPubMedGoogle Scholar
  91. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30:83–89CrossRefGoogle Scholar
  92. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12):e1326. doi: 10.1371/journal.pone.0001326 CrossRefPubMedCentralPubMedGoogle Scholar
  93. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus X domestica Borkh.). Nat Genet 42:833–839CrossRefPubMedGoogle Scholar
  94. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedCentralPubMedGoogle Scholar
  95. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039CrossRefPubMedGoogle Scholar
  96. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefPubMedGoogle Scholar
  97. Weese D, Emde AK, Rausch T, Döring A, Reinert K (2009) RazerS–fast read mapping with sensitivity control. Genome Res 19:1646–1654CrossRefPubMedCentralPubMedGoogle Scholar
  98. Yu J, Hu SN, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296:79–92CrossRefPubMedGoogle Scholar
  99. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedCentralPubMedGoogle Scholar
  100. Zhu Z, Niu B, Chen J, Wu S, Sun S, Li W (2013) MGAviewer: a desktop visualization tool for analysis of metagenomics alignment data. Bioinformatics 29:122–123CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Centre for BioinformaticsPondicherry UniversityPondicherryIndia

Personalised recommendations