Skip to main content

Role of Cyanobacteria in Nutrient Cycle and Use Efficiency in the Soil

  • Chapter
  • First Online:
Nutrient Use Efficiency: from Basics to Advances

Abstract

Cyanobacteria are ancient key photosynthetic prokaryotic organisms playing critical role in the biological nutrient cycling in different habitats. They have tremendous capabilities for the management of agroecosystem. The organism possesses various attributes that directly or indirectly not only improve nitrogen (N), phosphorus (P), potassium (K), iron (Fe), and other mineral content in the soils but facilitate plants to make better use of such minerals in plant growth promotion for enhanced crop production. Although much work has been carried out on the nitrogen fixation mechanisms of cyanobacteria, its direct implication in the field is still awaited. Similarly continuous research work is required on the identification of efficient strains of cyanobacteria to make better utilization of them in improving macro- and micronutrients use efficiency by the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Mahmoud ALE, Issa AA (1994) Cyanobacterial biofertilizer improve growth of wheat. Phyton 34:11–18

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. doi:10.1007/s00253-009-2196-0

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologie 84:391–397

    Article  Google Scholar 

  • Antonia H (2008) The cyanobacteria. Caister Academic Press, Northforlk, pp 13–20

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2006) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Anguilar C (1998) Impact on arbuscular mycorrhiza formulation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relations: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. doi:10.1186/1475-2859-13-66

    Article  Google Scholar 

  • Bloom AJ, Fresnsch J, Taylor AR (2006) Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann Bot 97:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229

    Article  CAS  Google Scholar 

  • Choudhary KK (2011) Occurrence of nitrogen-fixing cyanobacteria during different stages of paddy cultivation. Bangladesh J Plant Taxon 18:73–76

    Article  Google Scholar 

  • Dobermann AR (2005) Nitrogen use efficiency – state of the art. Agronomy & Horticulture-Faculty Publications. Paper 316. http://digitalcommons.unl.edu/agronomyfacpub/316

  • Dutta D, De D, Chaudhari S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4:36

    Article  Google Scholar 

  • El-Gaml M (2006) Studies on cyanobacteria and their effect on some soil properties. Thesis, Benha University. Enhanced-Efficiency Fertilizers, Frankfurt, Germany. Digital Commons, University of Nebraska

    Google Scholar 

  • Fattah QA (2005) Plant resources for human development. In: Third international botanical conference 2005. Bangladesh Botanical Society, Dhaka, Bangladesh

    Google Scholar 

  • Fay P, Stewart WDP, Walsby AE, Fogg GE (1968) Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature (London) 220:810–812

    Article  CAS  Google Scholar 

  • Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvements. Plant Soil 158:29–37

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of egg plants. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Hasan MA (2012) Investigation of the nitrogen fixing cyanobacteria (BGA) in rice fields of North-West region of Bangladesh. I: Nonfilamentous. J Environ Sci Nat Resour 5:185–192

    Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal P, Kashyap AK, Prasanna R, Singh PK (2010) Evaluating the potential of N. calcicola and its bicarbonate resistant mutant as bioameliorating agents for ‘Usar’ soil. Indian J Microbiol 50:12–18

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts–or just soil free-riders? Front Plant Sci 4:134. doi:10.3389/fpls.2013.00134

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson C, Northen T (2010) Calcifying cyanobacteria–the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21:365–371. doi:10.1016/j.copbio.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Lang N (1968) The fine structure of blue-green algae. Ann Rev Microbiol 22:15–42

    Article  CAS  Google Scholar 

  • Lavelle P, Dugdale R, Scholes R, Berhe AA, Carpenter E, Codispoti L, Izac A-M, Lemoalle J, Luizao F, Scholes M, Tréguer P, Ward B (2005) Nutrient cycling. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol I. Island Press, London, pp 321–351

    Google Scholar 

  • Manjunath MN, Patil PL, Gali SK (2006) Effect of organics amended rock phosphate and P solubilizer on P use efficiency of French bean in a Vertisol of Malaprabha Right Bank command of Karnataka. Karnataka J Agric Sci 19:36–39

    Google Scholar 

  • Margheri MC, Tredici MR, Allotta G, Vagnoli L (1990) Heterotrophy metabolism and regulation of uptake hydrogenase activity in symbiotic cyanobacteria. In: Polsinelli M, Materassi R, Vincenzin M (eds) Developments in plant and soil sciences - biological nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 481–486

    Google Scholar 

  • Mishra U, Pabbi S (2004) Cyanobacteria – a potential biofertilizer for rice. Resonance 9(6):6–10

    Article  Google Scholar 

  • Perrott KW, Sarathchandra SU, Dow BW (1992) Seasonal and fertilizer effects on the organic cycle and microbial biomass in a hill country soil under pasture. Aust J Soil Res 30:383–394

    Article  CAS  Google Scholar 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, New York

    Google Scholar 

  • Prasanna R, Nain L, Ancha R, Srikrishna J, Joshi M, Kaushik BD (2009) Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egypt J Biol 1:26–36

    Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2011) Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J Microbiol Biotechnol. doi:10.1007/s11274-011-0926-9

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AA, Stella AA, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger PA, Reynaud PA (1982) Free-living blue-green algae in tropical soils. Martinus Nijhoff Publisher, La Hague

    Book  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Google Scholar 

  • Sah P (2008) Understanding the physiology of heterocysts and nitrogen fixation in cyanobacteria or blue-green algae. Nat Sci 6:28–33

    Google Scholar 

  • Sahu D, Priyadarshini I, Rath B (2012) Cyanobacteria – as potential biofertilizer. CIB Tech J Microbiol 1:20–26

    Google Scholar 

  • Setiawati TC, Handayanto E (2010) Role of phosphate solubilising bacteria on availability phosphorus in Oxisols and tracing of phosphate in corn by using 32P. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010

    Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. Fed Eur Mat Soc Microbiol Ecol 54:131–140

    CAS  Google Scholar 

  • Spaepen S, Vanderkyden J, Remans R (2007) Indole-3-acetic acid in microbial and micro organism – plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Steinshamn H, Thuen E, Bleken MA, Brenoe UT, Ekerholt G, Yri C (2004) Utilization of nitrogen (N) and phosphorus (P) in and organic dairy farming system in Norway. Agric Ecosyst Environ 104:509–522

    Article  CAS  Google Scholar 

  • Sukor A (2013) Effect of cyanobacterial fertilizers compared to commonly used organic fertilizers on nitrogen availability, lettuce growth and nitrogen use efficiency on different soil textures. MS thesis, Colorado State University

    Google Scholar 

  • Syiem MB (2005) Entrapped cyanobacteria: Implications for biotechnology. Indian J Biotechnol 4:209–215

    CAS  Google Scholar 

  • Tabita FR, Colletti C (1979) Carbon dioxide assimilation in cyanobacteria: regulation of ribulose, 1,5-bisphosphate carboxylase. J Bacteriol 140:452–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial diversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57–58:1–45

    Article  Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 3:15

    Google Scholar 

  • Wilson LT (2006) Cyanobacteria: a potential nitrogen source in rice fields. Texas Rice 6:9–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, M., Singh, D.P., Prabha, R., Sharma, A.K. (2015). Role of Cyanobacteria in Nutrient Cycle and Use Efficiency in the Soil. In: Rakshit, A., Singh, H.B., Sen, A. (eds) Nutrient Use Efficiency: from Basics to Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2169-2_10

Download citation

Publish with us

Policies and ethics