Fourier Series

  • A. D. R. Choudary
  • Constantin P. Niculescu


Fourier series decompose periodic functions or periodic signals into the sum of a countable family of simple oscillating functions, namely sines and cosines (or complex exponentials).


Hilbert Space Fourier Series Periodic Function Mixed Problem Trigonometric Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carleson, L.: On the convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)Google Scholar
  2. 2.
    Bhatia, R.: Notes on Functional Analysis. Hindustan Book Agency, New Delhi (2009)MATHGoogle Scholar
  3. 3.
    Vladimirov, V.S.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)Google Scholar
  4. 4.
    Gonzalez-Velasco, E.A.: Connections in mathematical analysis: the case of Fourier series. Am. Math. Mon. 99(5), 427–441 (1992)Google Scholar
  5. 5.
    Zygmund, A.: Trigonometric Series, 2nd edn. Cambridge University Press, Cambridge (1988)MATHGoogle Scholar
  6. 6.
    Boas, R.P.: Summation formulas and band-limited signals. Tohoku Math. J. 24, 121–125 (1972)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Steiner, A.: Plancherel’s theorem and the Shannon series derived simultaneously. Am. Math. Mon. 87, 193–197 (1980)CrossRefMATHGoogle Scholar
  8. 8.
    Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12, 45–89 (1985)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bhatia, R.: Fourier Series. The Mathematical Association of America, Washington (2005)Google Scholar
  10. 10.
    Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, New York (2008)MATHGoogle Scholar
  11. 11.
    Grafakos, L.: Modern Fourier Analysis, 2nd edn. Springer, New York (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)MATHGoogle Scholar
  13. 13.
    Chernoff, P.R.: Pointwise convergence of Fourier series. Am. Math. Mon. 87, 399–400 (1980)Google Scholar
  14. 14.
    Jordan, C.: Sur la série de Fourier. C.R. Acad. Sci. Paris, 92, 228–230 (1881)Google Scholar
  15. 15.
    Lebesgue, H.: Leçons sur les séries trigonométriques. Gauthier-Villars, Paris (1906)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Abdus Salam School of Mathematical SciencesLahorePakistan
  2. 2.Department of MathematicsUniversity of CraiovaCraiovaRomania

Personalised recommendations