Improper Riemann Integrals

  • A. D. R. Choudary
  • Constantin P. Niculescu


The Riemann integral applies only to bounded functions defined on compact intervals. This severe restriction can be relaxed by considering larger concepts of integrability.


Integrable Function Gamma Function Bernoulli Polynomial Bernoulli Function Compact Subinterval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barbălat, I.: Systèmes d’équations différentielles d’oscillations non-linéaires. Rev. Roum. Math. Pures Appl. 4, 267–270 (1959)MATHGoogle Scholar
  2. 2.
    Levrie, P., Daems, W.: Evaluating the probability integral using Wallis’s product formula for \(\pi \). Am. Math. Mon. 116, 538–541 (2009)Google Scholar
  3. 3.
    Apostol, T.M.: An elementary view of Euler’s summation formula. Am. Math. Mon. 106(5), 409–418 (1999)Google Scholar
  4. 4.
    Boas, R.P.: Partial sums of infinite series and how they grow. Am. Math. Mon. 84, 237–258 (1977)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Lampret, V.: The Euler-Maclaurin and Taylor formulas: twin elementary derivations. Math. Mag. 74, 109–122 (2001)Google Scholar
  6. 6.
    Boas, R.P.: A Primer of Real Functions. The Carus Mathematical Monographs, vol. 13. Mathematical Association of America, Washington (1996)Google Scholar
  7. 7.
    Artin, E. (1931, 1964): The Gamma Function. Holt, Rinehart and Winston, New York. English translation of German original. Teubner, Einführung in die Theorie der Gammafunktion (1964)Google Scholar
  8. 8.
    Dutkay, D.E., Niculescu, C.P., Popovici, F.: A short proof of Stirling’s formula. Am. Math. Mon. 120, 733–736 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Abdus Salam School of Mathematical SciencesLahorePakistan
  2. 2.Department of MathematicsUniversity of CraiovaCraiovaRomania

Personalised recommendations