A Defaultable Financial Market with Complete Information

  • I. Venkat Appal Raju
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 327)


We consider a Markov-modulated defaultable Brownian market and price the defaultable contingent claims with the intensity-based methodology using the fair price concept under the benchmark approach. We also derive the locally risk-minimizing hedging strategy for defaultable contingent claims under the benchmark approach. We assume that the default intensity and the stock price parameters are modulated by a Markov process. The recovery processes are assumed to have random payments at default time as well as at the maturity of the claims.


Credit Risk Price Process Martingale Measure Hedging Strategy Wealth Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bain A, Crisan D (2009) Fundamentals of stochastic filtering, Springer, BerlinGoogle Scholar
  2. 2.
    Biagini F, Cretarola A (2007) Quadratic hedging methods for defaultable claims. Appl Math Optim 56:425–443CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bielecki TR, Rutkowski M (2004) Credit risk: modelling, valuation and hedging, vol 2. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Christensen MM, Platen E (2005) A general benchmark model for stochastic jump sizes. Stoch Anal Appl 23(5):1017–1044CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Di Masi GB, Kabanov YM, Runggaldier WJ (1994) Mean-variance hedging of options on stocks with Markov volatilities. Theory Probab Appl 39(1):172–182CrossRefMathSciNetGoogle Scholar
  6. 6.
    Elliott RJ, Jeanblanc M, Yor M (2000) On models of default risk. Math Finan 10:179–195CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Föllmer H, Schweizer M (1991) Hedging of contingent claims under incomplete information. In: Elliot RJ, Davis MHA (eds) Applied stochastic analysis. Gordon and Breach, New York, pp 389–414Google Scholar
  8. 8.
    Frey R, McNeil AJ (2000) Modelling dependent defaults. University of Zurich and ETHZ (preprints)Google Scholar
  9. 9.
    Hamilton J (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–384CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Heath D, Platen E (2002) Consistent pricing and hedging for a modified constant elasticity of variance model. Quant Finan 2(6):459–467CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kelly JR (1956) A new interpretation of information rate. Bell Syst Technol J 35:917–926CrossRefGoogle Scholar
  12. 12.
    Long JB (1990) The numeraire portfolio. J Finan Econ 26(1):29–69CrossRefGoogle Scholar
  13. 13.
    Platen E (2002) Arbitrage in continuous complete markets. Adv Appl Probab 34(3):540–558CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Platen E, Heath D (2006) A benchmark approach to quantitative finance. Springer Finance. Springer, BerlinGoogle Scholar
  15. 15.
    Raju IVA, Selvaraju N (2012) Growth optimal portfolio for unobservable Markov modulated markets. Int J Math Oper Res 4(1):31–40CrossRefMathSciNetGoogle Scholar
  16. 16.
    Schweizer M (2008) Local risk-minimization for multidimensional assets and payment streams. Banach Center Publ 83:213–229CrossRefMathSciNetGoogle Scholar
  17. 17.
    Tebaldi C (2005) Hedging using simulation: a least squares approach. J Econ Dyn Control 29(8):1287–1312CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Indian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations