Skip to main content

High-Temperature Solar Selective Coating

  • Conference paper
  • First Online:
Systems Thinking Approach for Social Problems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 327))

Abstract

Solar energy has maximum potential in comparison with other renewable energy sources. Solar thermal conversion is one of the direct methods for harnessing solar energy using solar selective absorbers. This review article summarizes the recent research progress on the high-temperature solar selective coatings, methodology, and process involved in coating, computer modeling, as well as designs of coatings, optical, compositional, and structural properties of selective coatings. The major bottleneck in developing a solar selective coating is its stability in air at temperature higher than 450 °C that possess thermal and structural stability in both individual and combined layers. New possibilities to overcome the above-mentioned problems on the performance of solar selective coatings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smalley RE (2005) MRS Bull 30:412

    Article  Google Scholar 

  2. Keeling CD, Whorf TP, Wahlen M, Vanderplicht J (1995) Nature 375:666

    Google Scholar 

  3. Mann ME, Bradley RS, Hughes MK, Jones PD (1998) Science 280:2029

    Google Scholar 

  4. DOE Argonne National Laboratory (2003) Basic research needs for the hydrogen economy. Report of DOE BES workshop on hydrogen production, storage, and use, 13–15 may 2003

    Google Scholar 

  5. Crabtree GW, Lewis NS (2007) Phys Today 60:37

    Article  Google Scholar 

  6. Hahn RE, Seraphin BO (1978) In: Hass G, Francombe MH (eds) Physics of thin films, vol 10. Academic Press, New York, p 1

    Google Scholar 

  7. Seraphin BO (1979) Solar energy conversion: solid state physics aspects. In: Seraphin BO (ed) Topics in applied physics, vol 31. Springer, Berlin, p 5

    Google Scholar 

  8. Harding GL (1979) Alternative grading profile for sputtered solar selective surfaces. J Vac Sci Technol 16:2111–2113

    Article  Google Scholar 

  9. Cao Y, Tian J, HU X (2000) Ni-Cr selective surface based on polyamide substrate. Thin Solid Films 365:49–52

    Article  Google Scholar 

  10. Zhang QC, Mills DR (1992) New cermet film structures with much improved selectivity for solar thermal application. Appl Phys Lett 60:545–547

    Article  Google Scholar 

  11. Blickensderfer R, Deardoff DK, Lincoln RL (1977) Sol Energy 19:429

    Article  Google Scholar 

  12. Rebouta L, Vaz F, Andritschky M, da Silva MF (1995) Surf Coat Technol 76–77:70

    Article  Google Scholar 

  13. Tabor H (1956) Selective radiation: I. Wavelength discrimination, II. wave front discrimination. Bull Res Counc Isr 5A(2):119–134

    Google Scholar 

  14. Shaffer LH (1958) Wavelength-dependent (selective) processes for the utilization of solar energy. Sol Energy 2:21

    Article  Google Scholar 

  15. Gier JT, Dunkle RV (1958) Selective spectral characteristics as an important factor in the efficiency of solar collectors. In: Transactions of the conference on the use of solar energy, vol 2. University of Arizona Press, Tucson, p 41

    Google Scholar 

  16. Tabor H (1961) Solar collectors, selective surfaces and heat engines. Proc Natl Acad Sci USA 47:1271–1278

    Article  Google Scholar 

  17. Kennedy CE (2008) Symposium on 14th Biennial CSP solar PACES (solar power and chemical energy systems), Las Vegas, Nevada, 4–7 Mar 2008

    Google Scholar 

  18. Zhang Q-C, Yin Y, Mills DR (1996) Sol Energy Mater Sol Cells 40:43–53

    Article  Google Scholar 

  19. Sohon JH, Bucher E (1996) Sol Energy Mater Sol Cells 43:59–65

    Article  Google Scholar 

  20. Lux-steiner MCh, Kirchner R, Liebemann E, Bucher E (1994) Sol Energy Mater Sol Cells 33:453–464

    Article  Google Scholar 

  21. Sohon JH, Binder G, Bucher E (1994) Sol Energy Mater Sol Cells 33:403–65

    Article  Google Scholar 

  22. Zhang Q-C, Kelly JC, Mills DR (1991) Appl Opt 30:13

    Google Scholar 

  23. Niklasson GA, Granqvist CG (1981) Sol Energy Mater 59:173–180

    Article  Google Scholar 

  24. Niklasson GA, Granqvist CG (1984) J Appl Phys 55:9

    Article  Google Scholar 

  25. Nejati MR, Fathollahi V, Asadi MK (2005) Sol Energy 78:235–241

    Article  Google Scholar 

  26. Farooq M, Lee ZH (2003) Renew Energy 28:1421–1431

    Article  Google Scholar 

  27. Yue S, Yueyan S, Fengchun W (2003) Sol Energy Mater Sol Cells 77:393–403

    Article  Google Scholar 

  28. Liu Y, Wang C, Xue Y (2012) Sol Energy Mater Sol Cells 96:131–136

    Article  Google Scholar 

  29. Du M, Hao L, Liu X, Jiang L, Wang S, Lv F, Li Z, Mi J (2011) Phys Procedia 18:222–226

    Article  Google Scholar 

  30. Niklasson GA, Granqvist CG (1982) Appl Phys Lett 41:8

    Article  Google Scholar 

  31. Zhang Q-C, Mills DR (1992) Appl Phys Lett 60(5):545–547

    Google Scholar 

  32. Zhang Q-C, Shen YG (2004) Sol Energy Mater Sol Cells 81:25–37

    Article  Google Scholar 

  33. Zhang Q-C (1998) Sol Energy Mater Sol Cells 52:95–106

    Article  Google Scholar 

  34. Niklasson GA (1988) Sol Energy Mater 17:217–226

    Article  Google Scholar 

  35. Barshilia HC, Selvakumar N, Rajam KS (2008) J Appl Phys 103:023507

    Article  Google Scholar 

  36. Barshilia HC, Kumar P, Rajam KS, Biswas A (2011) Sol Energy Mater Sol Cells 95:1707–1715

    Article  Google Scholar 

  37. Farooq M, Raja IA (2008) Renew Energy 33:1275–1285

    Google Scholar 

  38. Farooq M, Hutchins MG (2002) Sol Energy Mater Sol Cells 71:73–83

    Google Scholar 

  39. Zhang QC, Zhao K, Zhang B-C, Wang L-F, Shen Z-L, Zhou Z-J, Lu D-Q, Xie D-L, Li B-F (1998) Sol Energy 64(1–3):109–114

    Google Scholar 

  40. Antonania A, Castadlo A, Addonizio ML, Esposito S (2010) Sol Energy Mater Sol Cells 94:1604–1611

    Article  Google Scholar 

  41. Esposito S, Antonaia A, Addonozio ML, Aprea S (2009) Thin Solid Film 517:6000–6006

    Article  Google Scholar 

  42. Erben E, Tlhanyl BA (1984) Ind Eng Chem Prod Res Dev 23:659–661

    Article  Google Scholar 

  43. Teixeira V, Sousa E, Costa MF, Nunes C, Rosa L, Carvalho MJ, Collares-Pereira M, Roman E, Gago J (2002) Vacuum 64:299–305

    Google Scholar 

  44. Jaworske DA, Shumway DA (2003) Solar selective coatings for high temperature applications. In: CP654 Space technology and applications international forum, STAIF

    Google Scholar 

  45. Zhang QC (2000) Sol Energy Mater Sol Cells 62:63–74

    Article  Google Scholar 

  46. Zhang QC, Mills DR (1992) Sol Energy Mater Sol Cells 27:273–290

    Article  Google Scholar 

  47. Zhang QC, Kelly JC, Mills DR (1990) J Appl Phys 68(9):4788–4794

    Google Scholar 

  48. Fan JCC, Zavracky PM (1976) Appl Phys Lett 29(8):478–480

    Google Scholar 

  49. Mckenzie DR (1979) Appl Phys Lett 34(1):25–28

    Google Scholar 

  50. Nyberg GA, Buhrman RA (1982) Appl Phys Lett 40(2):129–131

    Google Scholar 

  51. Rebouta L, Pitaes A, Andritschky M, Capela P, Cerqueira MF, Matilainen A, Pischow K (2011) Surf Coat Technol 211:41–44

    Google Scholar 

  52. Du M, Hao L, Mi J, Lv F, Liu X, Jiang L, Wang S (2011) Sol Energy Mater Sol Cells 95:1193–1196

    Article  Google Scholar 

  53. Xinkang D, Cong W, Tianmin W, Long Z, Buliang C, Ning R (2008) Thin Solid Films 516:3917–3977

    Article  Google Scholar 

  54. Vien TK, Sella C, Lafait J, Berthier S (1985) Thin Solid Film 126:17–22

    Article  Google Scholar 

  55. Segaud JP, Drevillon B, Pascual E, Ossikovski R, Monnier G, Rimbourg L (1993) Thin Solid Films 234:503–507

    Article  Google Scholar 

  56. Craighead HG, Howard RE, Sweeney JE (1981) Appl Phys Lett 39(1)

    Google Scholar 

  57. Nuru ZY, Arendse CJ, Nemutudi R, Nemraoui O, Maaza M (2011) Phys B

    Google Scholar 

  58. Moller T, Honicke D (1998) Sol Energy Mater Sol Cells 54:397–403

    Article  Google Scholar 

  59. Kunic R, Mihelcic M, Orel B, Perse LS, Bizjak B, Kovac J, Brunold S (2011) Sol Energy Mater Sol Cells 95:2965–2975

    Article  Google Scholar 

  60. Kozelj M, Vuk AS, Jerman I, Orel B (2009) Sol Energy Mater Sol Cells 93:1733–1742

    Article  Google Scholar 

  61. Orel B, Spreizer H, Perse LS, Fir M, Vuk AS, Merlini D, Vodlan M, Kohl M (2007) Sol Energy Mater Sol Cells 91:93–107

    Article  Google Scholar 

  62. Xiao X, Miao L, Xu G, Lu L, Su Z, Wang N, Tanemura S (2011) Appl Surf Sci 257:10729–10736

    Article  Google Scholar 

  63. Cindrella L (2007) Sol Energy Mater Sol Cells 91:1898–1901

    Article  Google Scholar 

  64. Tharamani CN, Mayanna SM (2007) Sol Energy Mater Sol Cells 91:664–669

    Article  Google Scholar 

  65. Barshilia HC, Kumar P, Rajam KS, Biswas A (2011) Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Sol Energy Mater Sol Cells 95:1707–1715

    Article  Google Scholar 

  66. Yin Y (2007) Nanocomposite thin films for solar energy conversion. In: Zhang S (ed) Nanocomposite thin films and coatings. Imperial College Press, London, pp 381–414

    Chapter  Google Scholar 

  67. Oelhafen P, Schuler A (2005) Nanostructured materials of solar energy conversion. Sol Energy 79:110–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belal Usmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Usmani, B., Harinipriya, S. (2015). High-Temperature Solar Selective Coating. In: Vijay, V., Yadav, S., Adhikari, B., Seshadri, H., Fulwani, D. (eds) Systems Thinking Approach for Social Problems. Lecture Notes in Electrical Engineering, vol 327. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2141-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2141-8_15

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2140-1

  • Online ISBN: 978-81-322-2141-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics