Skip to main content

Oil Spill Cleanup: Role of Environmental Biotechnology

  • Chapter
  • First Online:
Applied Environmental Biotechnology: Present Scenario and Future Trends

Abstract

Oil spills are a major environmental concern in today’s world. With the increase in anthropogenic activities, accidental and incidental spillage of oil has severely affected the environment, causing both ecological and economic damage. Mechanical, chemical, and biological approaches have been utilized as remediation strategies for oil spill cleanup. The time period just after oil spillage being the most crucial for oil spill cleanup, it is imperative that primary and secondary oil spill cleanup response and contingency plans should be in place for mediating immediate intelligent remedial action. On the basis of type of oil spilled, weather conditions, and topography of the surrounding area, careful selection of remedial methods should be done. Mechanical approaches such as booms, skimmers, and sorbents are utilized in conjunction with one another for cleanup operations and are one of the widely used primary responses. Chemical dispersants when sprayed on oil slick accelerate the rate of natural dispersion of medium- and light-weight oils and also increase the availability of oil for microbial colonization. Close monitoring of economic and ecological implications of addition of dispersants has to be done before undertaking dispersant application since they are known to be detrimental or ineffective if not applied intelligently. Biostimulation, bioaugmentation, phytoremediation, and genetically modified organisms (GMOs) have all been tried as remedial strategies for oil spills with varying success. As biological strategies are safest, we need to redesign them with the help of genomic and molecular tools to make them more successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Majed AA, Adebayo AR, Hossain ME (2012) A sustainable approach to controlling oil spills. J Environ Manag 113:213–227. doi:10.1016/j.jenvman.2012.07.034

    Article  Google Scholar 

  • Allen MA, Goh F, Burns BP, Neilan BA (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7(1):82–96. doi:10.1111/j.1472-4669.2008.00187.x

    Article  CAS  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45(16):6709–6715. doi:10.1021/es2013227

    Article  CAS  Google Scholar 

  • Baker PW, Ito K, Watanabe K (2003) Marine prosthecate bacteria involved in the ennoblement of stainless steel. Environ Microbiol 5(10):925–932

    Article  CAS  Google Scholar 

  • Binark N, Guven KC, Gezgin T, Unlu S (2000) Oil pollution of marine algae. Bull Environ Contam Toxicol 64(6):866–872

    Article  CAS  Google Scholar 

  • Bourne WRP (1979) The impact of Torrey Canyon and Amoco Cadiz oil on north French seabirds. Mar Pollut Bull 10:124

    Google Scholar 

  • Briney A (2011) Geography of the world’s largest oil spill. http://geography.about.com/od/lists/a/largestoilspills.htm. Accessed 15 Oct 2013

  • Broje V, Keller AA (2006) Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol 40(24):7914–7918

    Article  CAS  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68(8):3978–3987

    Article  CAS  Google Scholar 

  • Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69(2):987–995

    Article  CAS  Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59(3):881–891

    CAS  Google Scholar 

  • Casselman A (2011) 10 biggest oil spills in history. http:// www.popularmechanics.com/science/energy/coal-oil-gas/biggest-oil-spills-in-history#slide-1

    Google Scholar 

  • Castro A, Iglesias G, Carballo R, Fraguela JA (2010) Floating boom performance under waves and currents. J Hazard Mater 174(1–3):226–235

    Article  CAS  Google Scholar 

  • Chapman H, Purnell K, Law RJ, Kirby MF (2007) The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Mar Pollut Bull 54(7):827–838

    Article  CAS  Google Scholar 

  • Cleaveland CJ (2010) Deep water horizon oil spill. The Encyclopedia of Earth

    Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol (Official journal of the Spanish Society for Microbiology) 5(4):189–193. doi:10.1007/s10123-002-0089-5

    Article  CAS  Google Scholar 

  • Cohn J (10 May 2010) A history of major oil spills. The New York Times

    Google Scholar 

  • Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9(1):177–186. doi:10.1111/j.1462-2920.2006.01126.x

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Advance Agron 56:55–114

    Article  CAS  Google Scholar 

  • do Carmo FL, dos Santos HF, Martins EF et al (2011) Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants. J Microbiol 49:535–543

    Article  CAS  Google Scholar 

  • Dutta TK, Harayama S (2000) Fate of crude oil by the combination of photooxidation and biodegradation. Environ Sci Technol 34:1500–1505. doi:10.1021/es991063o

    Article  CAS  Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst bacteriol 45(1):116–123

    Article  CAS  Google Scholar 

  • Dzantor EK, Chekol T, Vough LR (2000) Feasibility of using forage grassed and legumes for phytoremediation of organic pollutants. J Environ Sci Health Part A 35:1645–1661

    Article  Google Scholar 

  • Engelhardt MA, Daly K, Swannell RP, Head IM (2001) Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 90(2):237–247

    Article  CAS  Google Scholar 

  • EPA (1999a) Alternative countermeasures for oil spills. In: Understanding oil spill and oil spill response. EPA Office of emergency and remedial response, USA

    Google Scholar 

  • EPA (1999b) The behaviour and effects of oils spills in aquatic environment. In: Understanding oil spill and oil spill response. Environmental Protection Agency, USA

    Google Scholar 

  • EPA (1999c) Mechanical containment and recovery following an oil spill. In: Understanding oil spill and oil spill response. Understanding oil spills in freshwater environments. Environmental Protection Agency, USA, pp 9–12

    Google Scholar 

  • ERCO (1982) Ixtoc oil spill assessment. Final report, executive summary prepared for the US Bureau of Land Management. (Contract No. AA851-CTO–71)

    Google Scholar 

  • Fehler SW, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of [methyl-14C]- and [methyl-2H3]methionine into 7- and 8-methylheptadecanes. Biochemistry 9(2):418–422

    Article  CAS  Google Scholar 

  • Foght J (2010) Nitrogen fixation and hydrocarbon-oxidizing bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 1662–1666

    Google Scholar 

  • Fox JL (2011) Natural-born eaters. Nat Biotechnol 29(2):103-106. doi:10.1038/nbt.1770

    Article  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial–fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609. doi:10.1128/MMBR.00020-11

    Article  CAS  Google Scholar 

  • Furuno S, Pazolt K, Rabe C, Neu TR, Harms H, Wick LY (2010) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol 12(6):1391–1398. doi:10.1111/j.1462-2920.2009.02022.x

    CAS  Google Scholar 

  • Gallego JL, Garcia-Martinez MJ, Llamas JF, Belloch C, Pelaez AI, Sanchez J (2007) Biodegradation of oil tank bottom sludge using microbial consortia. Biodegradation 18(3):269–281. doi:10.1007/s10532-006-9061-y

    Article  Google Scholar 

  • George-Ares A, Lessard RR, Becker KW, Canevari GP, Fiocco RJ (2001) Modification of the dispersant Corexit 9500 for use in freshwater. Proceedings of the 2001 international oil spill conference, Tampa, 2001

    Google Scholar 

  • Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52(Pt 3):901–911

    Article  CAS  Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJ (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47(3):345–357. doi:10.1016/S0168-6496(03)00298-8

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58(4):1142–1152

    CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15(3):205–214. doi:10.1016/j.copbio.2004.04.002

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352. doi:10.1038/nature02134

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182. doi:10.1038/nrmicro1348

    Article  CAS  Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL (1997) Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63(6):2330–2337

    CAS  Google Scholar 

  • ITOPF (2013) Dispersants. http://www.itopf.com/spill-response/clean-up-and-response/dispersants/. Accessed 13 April 2014

  • Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68(5):2337–2343

    Article  CAS  Google Scholar 

  • Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99(7):2637–2643. doi:10.1016/j.biortech.2007.04.047

    Article  CAS  Google Scholar 

  • Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69(11):6688–6697

    Article  CAS  Google Scholar 

  • Knezevich V, Koren O, Ron EZ, Rosenberg E (2006) Petroleum bioremediation in seawater using Guano as the fertilizer. Bioremediat J 10:83–91

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974. doi:10.1128/AEM.05402-11

    Article  CAS  Google Scholar 

  • Lin Q, Mendelssohn IA (2008) Determining tolerance limits for restoration and phytoremediation with Spartina patens in crude oil-contaminated sediment in greenhouse. Arch Agrony Soil Sci 54:681–690

    Article  CAS  Google Scholar 

  • Liu R, Jadeja RN, Zhou Q, Liu Z (2012) Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ Eng Sci 29(6):494–501. doi:10.1089/ees.2010.0490

    Article  CAS  Google Scholar 

  • Marshall AG, Rodgers RP (2003) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37:53–59

    Article  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8(1):10. doi:10.1186/2046-9063-8-10

    Article  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9(1):165–176. doi:10.1111/j.1462-2920.2006.01125.x

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (1986) Wetlands. Van Nostrand Reinhold, New York

    Google Scholar 

  • Nedwed T, Resby JLM, Guyomarch J (2006) Dispersant effectiveness after extended low-energy soak times. Proceedings from Interspill, London, 2006

    Google Scholar 

  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B (2011) Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One 6(3):e17961. doi:10.1371/journal.pone.0017961

    Article  CAS  Google Scholar 

  • Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2010) Both Cycloclasticus sp. and Pseudomonas sp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71(1):137–147. doi:10.1111/j.1574-6941.2009.00788.x

    Article  CAS  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807. doi:10.1002/jctb.2182

    Article  CAS  Google Scholar 

  • Njoku Kl AM, Oboh BO (2009) Phytoremediation of crude oil contaminated soil: the effect of growth of glycine max on the physico-chemical and crude oil contents of soil. Nat Sci 7:79–87

    Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:475193. doi:10.4061/2011/475193

    Article  CAS  Google Scholar 

  • Perfumo A, Smyth TJP, Marchant R, Banat IM (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN, McGenity TJ, van der Meer JR, dL V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1501–1512

    Chapter  Google Scholar 

  • Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68(2):661–667

    Article  CAS  Google Scholar 

  • Radwan S, Mahmoud H, Khanafer M, Al-Habib A, Al-Hasan R (2010) Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation. Microb Ecol 60(2):354–363. doi:10.1007/s00248-010-9702-x

    Article  CAS  Google Scholar 

  • Rico-Martinez R, Snell TW, Shearer TL (2013) Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera). Environ Pollut 173:5–10. doi:10.1016/j.envpol.2012.09.024

    Article  CAS  Google Scholar 

  • Roling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548

    Article  CAS  Google Scholar 

  • Roling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70(5):2603–2613

    Article  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27C:191–194. doi:10.1016/j.copbio.2014.02.004

    Article  Google Scholar 

  • Schneiker S, Martins Dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24(8):997–1004. doi:10.1038/nbt1232

    Article  CAS  Google Scholar 

  • Shaw SL, Gantt B, Meskhidze N (2010) Production and emissions of marine isoprene and monoterpenes: a review. Adv Meteorol, Article ID 408696. doi:10.1155/2010/408696.

    Google Scholar 

  • Strøm-Kristiansen T, Lewis A, Daling PS, Hokstad JN, Singaas I (1997) Weathering and dispersion of naphthenic, asphaltenic and waxy crude oils. In: Proceedings of the 1997 international oil spill conference, Florida, 1997, pp 631–636

    Google Scholar 

  • Sveum P, Ladousse A (1989) Biodegradation of oil in the Arctic: enhancement by oil-soluble fertilizer application. Proceedings of 1989 international oil spill conference, Florida, 1989

    Google Scholar 

  • Syutsubo K, Kishira H, Harayama S (2001) Development of specific oligonucleotide probes for the identification and in-situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol 3:371–379

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2006) Biodegradation of crude oil by nitrogen fixing marine bacteria Azotobacter chroococcum. Res J Microbiol 1:401–408

    Article  CAS  Google Scholar 

  • Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208

    Article  CAS  Google Scholar 

  • Valentin L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbon in forest and salt marsh soils by white rot fungi. Int Biodeterior Biodegrad 58:15–21

    Article  CAS  Google Scholar 

  • Wang F, Lei S, Xue M, Ou J, Li W (2014) In-situ separation and collection of oil from water surface via a novel superoleophilic and superhydrophobic oil containment boom. Langmuir 30(5):1281–1289. doi:10.1021/la403778e

    Article  CAS  Google Scholar 

  • Warr LN, Friese A, Schwarz F, Schauer F, Portier RJ, Basirico LM, Olson GM (2013) Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints. Biotechnol Res Int 2013:1–9. doi:10.1155/2013/704806

    Article  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(Pt 2):339–348

    Article  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53(Pt 3):779–785

    Article  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54(Pt 1):141–148

    Article  CAS  Google Scholar 

  • Zhu X, Venosa AD, Suidan MT, Lee K (2001) Guidelines for the bioremediation of marine shorelines and freshwater wetlands. Environmental Protection Agency, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Chatterjee, S. (2015). Oil Spill Cleanup: Role of Environmental Biotechnology. In: Kaushik, G. (eds) Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2123-4_9

Download citation

Publish with us

Policies and ethics