Skip to main content

Management of Environmental Phosphorus Pollution Using Phytases: Current Challenges and Future Prospects

  • Chapter
  • First Online:
Applied Environmental Biotechnology: Present Scenario and Future Trends

Abstract

Phosphorus is an important element for plant and animal nutrition considering its diverse roles in their growth and development. It is derived from different organic and inorganic sources rich in phosphorus. Inorganic sources are most commonly used for development of phosphorus fertilisers while organic sources like phytic acid phosphorus of plant origin is a major source of phosphorus in animal nutrition. Excessive application of phosphorus fertilisers without proper analysis of its soil concentration results in high phosphorus and associated heavy metals deposition in agricultural soils. This has multiple environmental consequences like loss of biological diversity in aquatic system due to phosphate runoff from soil by rain water. Further, inability of monogastric animals to hydrolyse phytate phosphorus and utilise it makes it necessary to supplement external phosphorus in animal feed. This leads to increased phosphorus load and release of excess phosphorus in faecal material at intensive livestock production area, which contributes to environmental phosphorus pollution. The supplementation of animal feeds with microbial phytases increases the bioavailability of phosphorus and minerals besides reducing the aquatic phosphorus pollution in the areas of intensive livestock production. Phytases are of significant value in effectively combating environmental phosphorus pollution. This chapter describes different application of phosphorus, its pollution consequences and use of phytases for strategic management of this problem phosphorus pollution and various promises and challenges therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abioye S, Ige D, Akinremi O, Hu Y, Flaten DN (2010) Characterizing fecal and manure phosphorus from pigs fed phytase supplemented diets. J Agr Sci 2:1916–9752.

    Google Scholar 

  • Aehle W (2007) Industrial enzymes. In Aehle W (ed) Enzymes in industry: production and applications, 3rd edn. Wiley-VCH, Weinheim, pp 99–263

    Google Scholar 

  • Angel CR, Powers WJ, Applegate TD, Tamim NM, Christma MC (2005) Influence of phytase on water-soluble phosphorus in poultry and swine manure. J Environ Qual 34:563–571

    CAS  Google Scholar 

  • Angelis MD, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: puri fi cation and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Google Scholar 

  • Augspurger NR, Webel DM, Lei XG, Baker DH (2003) Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J Anim Sci 81(2):474–483

    CAS  Google Scholar 

  • Barrientos L, Scott JJ, Murthy PP (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:1489–1495

    CAS  Google Scholar 

  • Bertrand JA, Flech JC, McConnell JCJ (1999) Phosphorus intake and excretion on South Carolina dairy farms. Prof Anim Sci 15:264–267

    Google Scholar 

  • Black CA (1968) Soil-plant relationships. Wiley, New York

    Google Scholar 

  • Bogar B, Szakacs G, Pandey A, Abdulhameed S, Linden JC, Tengerdy RP (2003) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prog 19:312–319

    CAS  Google Scholar 

  • Bohn L, Meyer A, Rasmussen S (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ Sci B 9:165–191

    CAS  Google Scholar 

  • Bomans E, Fransen K, Gobin A, Mertens J, Michiels P, Vandendriessche H, Vogels N (2005) Addressing phosphorus related problems in farm practice. Final report to the European Commission, DG Environment, pp 9–21

    Google Scholar 

  • Boyce A, Walsh, G (2007) Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer, J Biotechnol 132:82–87

    CAS  Google Scholar 

  • Cao L, Wang W, Yang C, Yang Y, Diana J, Yakupitiyage A, Luo Z, Li D (2007) Application of microbial phytase in fish feed. Enzyme Microb Technol 40:497–507

    CAS  Google Scholar 

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322

    CAS  Google Scholar 

  • Centner T (2004) Developing institutions to encourage the use of animal wastes as production inputs. Agric Hum Values 21:367–375

    Google Scholar 

  • Chadha BS, Gulati H, Minhas M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus, World J Microbiol Biotechnol 20:105–109

    CAS  Google Scholar 

  • Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294

    CAS  Google Scholar 

  • Cowieson A, Acamovic T, Bedford M (2006) Phytic acid and phytase: implications for protein utilization by poultry. Poult Sci 85:878–885

    CAS  Google Scholar 

  • Dobrota C (2004) The biology of phosphorous. In Valsami-Jones, E. (ed) Phosphorus in environmental technologies. IWA, London, pp 51–74

    Google Scholar 

  • Dost K, Tokul O (2006) Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal Chim Acta 558:22–27

    CAS  Google Scholar 

  • Dvoráková J (1998) Phytase: sources, preparation and exploitation. Folia Microbiol 43:323–338

    Google Scholar 

  • Ebune AS, Al-Asheh, Duvnjak Z (1995) Effects of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid-state fermentation. Bioresource technology 54:241–247

    Google Scholar 

  • Ehrlich KC, Montalbano BG, Mullaney EJ, Dischinger HC, Ullah, AH (1993) Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum). Biochem Biophys Res Commun 195:53–57

    CAS  Google Scholar 

  • El-Batal AI, Abdel K, Arem H (2001) Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Res Int 34:715–720

    CAS  Google Scholar 

  • Forsberg C, Meidinger R, Liu M, Cottrill M, Golovan S, Phillips J (2013) Integration, stability and expression of the E. coli phytase transgene in the Cassie line of Yorkshire Enviropig™. Transgenic Res 22:379–389

    CAS  Google Scholar 

  • Garchow BG, Jog SP, Mehta BD, Monosso JM, Murthy PPN (2006) Alkaline phytase from Lilium longiflorum: purification and structural characterization. Protein Expr Purif 46:221–232

    CAS  Google Scholar 

  • Garikipati DK (2004) Effect of exogenous phytase addition to diets on phytate phosphorus digestibility in dairy cows. M. Sc. Thesis, Department of Animal Sciences, Washington State University

    Google Scholar 

  • Ghareib, M (1989) Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus. Acta Microbiologica Hungarica 37:159–164

    Google Scholar 

  • Ghorbani-Nasrabadi R, Greiner R, Alikhani HA, Hamedi J (2012) Identification and determination of extracellular phytate-degrading activity in actinomycetes. World J Microbiol Biotechnol 28:2601–2608

    CAS  Google Scholar 

  • Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 19:429–433

    CAS  Google Scholar 

  • Graf E, Empson KI, Eaton JW (1987) Phytic acid: a natural antioxidant. J Biol Chem 262:11647

    CAS  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44:125–140

    CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    CAS  Google Scholar 

  • Greiner R, Alminger ML, Carlsson NG (2001) Stereospecificity of myoinositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker’s yeast. J Agric Food Chem 49:2228–2233

    CAS  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    CAS  Google Scholar 

  • Han YW, Gallagher DJ, Wilfred AG (1987) Phytase production by Aspergillus ficuum on semisolid substrate. J Ind Microbiol 2:195–200

    CAS  Google Scholar 

  • Haraldsson AK, Veide J, Andlid T et al (2005) Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. J Agric Food Chem 53:5438–5444

    CAS  Google Scholar 

  • Harland BF, Morris ER (1995) Phytate: a good or a bad food component? Nutr Res 15:733–754

    CAS  Google Scholar 

  • Harper AF, Kornegay ET, Schell TC (1997) Phytase supplementation of low-phosphorus growing-finishing pigs’ diets improves performance, phosphorus digestibility, and bone mineralization and reduces phosphorus excretion. J Anim Sci 75:3174–3186

    CAS  Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    CAS  Google Scholar 

  • Hellstrom AM, Vazques-juarez R, Svanberg U, Andlid TA (2010) Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa. Int J Food Microbiol 136:352–358

    Google Scholar 

  • Hirimuthugoda NY, Chi Z, Wu L (2007) Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche-de-Mer Inf Bull 26:31–33

    Google Scholar 

  • Hong K, Ma Y, Li M (2001) Solid-state fermentation of phytase from cassava dregs. Twenty-second symposium on biotechnology for fuels and chemicals. Humana Press

    Google Scholar 

  • Howarth R, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of coastal rivers, bays and seas. ESA Issues Ecol 7:1–15

    Google Scholar 

  • Howson SJ, Davis RP (1983) Production of phytate-hydrolysing enzyme by some fungi. Enzyme Microb Technol 5:377–382

    CAS  Google Scholar 

  • Huang H, Shi P, Wang Y, Luo H, Shao N, Wang G, Yang P, Yao B (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    CAS  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    CAS  Google Scholar 

  • Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O (2000) Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Tierernähr 53:353–373

    CAS  Google Scholar 

  • Iqbal TH, Lewis KO, Cooper BT (1994) Phytase activity in the human and rat small intestine. Gut 35:1233–1236

    CAS  Google Scholar 

  • Jacob JP, Ibrahim S, Blair R, Namkung H, Paik IK (2000) Using enzyme supplemented, reduced protein diets to decrease nitrogen and phosphorus excretion of white leghorn hens. Asian Aust J Anim Sci 13:1743–1749

    CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    CAS  Google Scholar 

  • Jorquera MA, Martinez O, Maruyama F, Marschner P, De la Luz Mora M (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23(3):182–191

    Google Scholar 

  • Kaur P, Satyanarayana T. (2009) Yeast acid phosphatases and phytases: production, characterization and commercial prospects. In Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications, vol 3, pp 693–714

    Google Scholar 

  • Kim Y, Kim H, Bae K, Yu J, Oh T (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb Technol 22:2–7

    CAS  Google Scholar 

  • Kumar V, Singh P, Jorquera M, Sangwan P, Kumar P, Verma AK, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369

    CAS  Google Scholar 

  • Kumar V, Sangwan P, Verma AK, Agrawal S (2014) Molecular and biochemical characteristics of recombinant β-propeller Phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Appl Biochem Biotechnol 173(2):646–659

    CAS  Google Scholar 

  • Lata S, Rastogi S, Kapoor A, Imran M (2013) Optimization of culture conditions for the production of phytase from Aspergillus heteromorphus MTCC 10685. Int J Adv Biotechnol Res 4:224–235

    CAS  Google Scholar 

  • Lei XG, Porres JM (2003) Phytase enzymology, applications, and biotechnology. Biotechnol Lett 25:1787–1794

    CAS  Google Scholar 

  • Lei X, Ku PK, Miller ER, Ullrey DE, Yokoyama MT (1993) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J Nutr 123:1117–1123

    CAS  Google Scholar 

  • Li X, Chi Z, Liu Z, Yan K, Li H (2008) Phytase production by a marine yeast Kodamea ohmeri BG3. Appl Biochem Biotechnol 149:183–193

    CAS  Google Scholar 

  • Li X, Liu Z, Chi Z, Li J, Wang X (2009) Molecular cloning, characterization and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol Res 113:24–36

    CAS  Google Scholar 

  • Li R-J, Lu W-J, Guo C-J, Li X-J, Gu J-T, Xiao K (2012) Molecular characterization and functional analysis of OsPHY1, a purple acid phosphatase (PAP)-type phytase gene in rice (Oryza sativa L.). J Integr Agric 11:1217–1226

    CAS  Google Scholar 

  • Liu N, Ru Y, Wang J, Xu T (2010) Effect of dietary sodium phytate and microbial phytase on the lipase activity and lipid metabolism of broiler chickens. Br J Nutr 103:862–868

    CAS  Google Scholar 

  • Lopez H, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739

    CAS  Google Scholar 

  • Magette W, Carton O (1996) Agricultural pollution. In: Kiely G (ed) Environmental engineering. McGraw-Hill, Berkshire, pp. 420–434

    Google Scholar 

  • Mallin MA, Cahoon LB (2003) Industrialized Animal production—a major source of nutrient and microbial pollution to aquatic ecosystems. Popul Environ 24:369–385

    Google Scholar 

  • McCollum EV, Hart EB (1908) On the occurrence of a phytin-splitting enzyme in animal tissues. J Biol Chem 4:497–500

    Google Scholar 

  • Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon AP (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252

    CAS  Google Scholar 

  • Mortvedt JJ, Beaton JD (1995) Heavy metal and radionucleide contaminants in phosphate fertilizers, scope 54, phosphorus in the global environment—transfers, cycles and Management. Wiley, London, 480 pp

    Google Scholar 

  • Mullaney EJ, Daly CB, Sethumadhavan K, Rodriquez E, Gen Lei X, Ullah AHJ (2000) Phytase activity in Aspergillus fumigatus isolates. Biochem Biophys Res Commun 275:759–763

    CAS  Google Scholar 

  • Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844

    CAS  Google Scholar 

  • National Research Council (NRC) (2001) Nutrient Requirements of Dairy Cattle. 7th rev. ed. Nat. Acad. Press, Washington, DC

    Google Scholar 

  • National Research Council (NRC) (1993) Nutrient requirements of fish. National Academy Press, Washington, DC, 114 pp

    Google Scholar 

  • Nayini NR, Markakis P (1984) The phytase of yeast. Lebensm Wiss Technol 17:24–26

    CAS  Google Scholar 

  • Olstorpe M, Schnürer J, Passoth V (2009) Screening of yeast strains for phytase activity. FEMS Yeast Res 9:478–488

    CAS  Google Scholar 

  • Oryschak MA, Simmins PH, Zijlstra RT (2002) Effect of dietary particle size and carbohydrase and/or phytase supplementation on nitrogen and phosphorus excretion of grower pigs. Can J Anim Sci 82:533–540

    CAS  Google Scholar 

  • Paik IK (2001) Management and excretion of phosphorus, nitrogen and pharmaceutical level minerals to reduce environmental pollution from animal production: a review. Asian Aust J Anim Sci 14(3):384–394

    CAS  Google Scholar 

  • Paik IK (2003) Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian Aust J Anim Sci 16:124–135

    Google Scholar 

  • Paik IK, Um JS, Lee SJ, Lee JG (2000) Evaluation of the efficacy of crude phytase preparations in broiler chickens. Asian Aust J Anim Sci 13:673–680

    CAS  Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214

    CAS  Google Scholar 

  • Peng YL, Guo YM, Yuan JM (2003) Effects of microbial phytase replacing partial inorganic phosphorus supplementation and xylanase on the growth performance and nutrient digestibility in broilers fed wheat-based diets. Asian Aust J Anim Sci 16:239–247

    CAS  Google Scholar 

  • Powar VK, Jagannathan V (1982) Purification and properties of phytate specific phosphatase from Bacillus subtilis. J Bacteriol 115:1102–1108

    Google Scholar 

  • Powers W, Angel R (2008) A review of the capacity for nutritional strategies to address environmental challenges in poultry production. Poult Sci 87:1929–938

    CAS  Google Scholar 

  • Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133:129–134

    CAS  Google Scholar 

  • Ragon M, Neugnot-Roux V, Chemardin P, Moulin G, Boze H (2008) Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr Purif 58:275–283

    CAS  Google Scholar 

  • Ramachandran S, Roopesh K, Nampoothiri KM, Szakacs G, Pandey A (2005) Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oil cakes as substrates. Process Biochem 40:1749–1754

    CAS  Google Scholar 

  • Rao DE, Rao KV, Reddy TP, Reddy VD (2009) Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit Rev Biotechnol 29(2):182–198

    CAS  Google Scholar 

  • Rapoport S, Leva E, Guest GM. (1941) Phytase in plasma and erythrocytes of various species of vertebrates. J Biol Chem 139:621–632

    CAS  Google Scholar 

  • Raun A, Cheng E, Burroughs W (1956) Ruminant nutrition, phytate phosphorus hydrolysis and availability to rumen microorganisms. J Agric Food Chem 4:869–871

    CAS  Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytases in legumes and cereals. Adv. Food Res 82:1–92

    Google Scholar 

  • Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A (2006) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97:506–511

    CAS  Google Scholar 

  • Rosen G (2002) Microbial phytase in broiler nutrition. In Garnsworthy PC, Wiseman J (eds) Recent advances in animal nutrition. Nottingham University Press, Nottingham, pp 105–117

    Google Scholar 

  • Rosu M, Sărăndan H, Jula A, Sarandan R, Ognean L (2012) The environmental pollution level with excretory phosphorus at laying hens in Romania bulletin UASMV. Vet Med 69:1–2

    Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Muller E, Borriss R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    CAS  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    CAS  Google Scholar 

  • Satter LD, Wu Z (2001) New strategies in ruminant nutrition: getting ready for the next millennium. Southwest Nutrition and Management Conference Proceedings, Tucson, AZ

    Google Scholar 

  • Satyanarayana T, Kunze G (2009) Acid phosphatases and phytases: characterization and commercial prospects. In Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Netherlands, Dordrecht, pp 693–714

    Google Scholar 

  • Schlemmer U, Jany KD, Berk A, Schulz E, Rechkemmer G (2001) Degradation of phytate in the gut of pigs: pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved. Arch Anim Nutr 55:255–280

    CAS  Google Scholar 

  • Segueilha L, Moulin G, Galzy P (1993) Reduction of phytate content in wheat bran and glandless cotton flour by Schwanniomyces castellii. J Agric Food Chem 41:2451–2454

    CAS  Google Scholar 

  • Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41

    CAS  Google Scholar 

  • Selle PH, Ravindran V, Pittolo PH, Bryden WL (2003) Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian Aust J Anim Sci 16:1158–1164

    CAS  Google Scholar 

  • Sheppy C (2001) The current feed enzyme market and likely trends. In Bedford MR, Partridge GG (edn) Enzymes in farm animal nutrition, 5. CAB International 2001

    Google Scholar 

  • Shieh TR, Ware JH (1968) Survey of microorganisms for the production of extracellular phytase. Appl Environ Microbiol 16:1348–1351

    CAS  Google Scholar 

  • Shigaki F, Sharpley A, Prochnow L (2006) Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future. Sci Agric 63:194–209

    CAS  Google Scholar 

  • Shim YH, Chae BJ, Lee JH (2003) Effects of phytase and carbohydrases supplementation to diet with a partial replacement of soybean meal with rapeseed meal and cottonseed meal on growth performance and nutrient digestibility of growing pigs. Asian Aust J Anim Sci 16:1339–1347

    CAS  Google Scholar 

  • Shim YH, Chae BJ, Lee JH (2004) Effects of phytase and enzyme complex supplementation to diets with different nutrient levels on growth performance and ileal nutrient digestibility of weaned pigs. Asian Aust J Anim Sci 17:523–532

    CAS  Google Scholar 

  • Shimizu M (1993) Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Biosci Biotechnol Biochem 56:1266–1269

    Google Scholar 

  • Shivanna GB, Govindarajulu V (2009) Screening of asporogenic mutants of phytase-producing Aspergillus niger CFR-335 strain. Microb Ecol Health Dis 21:57

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2008) Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresour Technol 99:2824–2830

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17(2):93–103

    CAS  Google Scholar 

  • Singh PK, Khatta VK, Thakur RS, Dey S, Sangwan MK (2003) Effects of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asian Aust J Anim Sci 16:1642–1649

    CAS  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6(3):69–87

    CAS  Google Scholar 

  • Sapna SB, Singh D, Sharma KK (2013) Microbial phytases in skirmishing and management of environmental phosphorus pollution. In Kuhad RC, Singh A (eds) Biotechnology for environmental management and resource recovery. Springer, India, pp 239–260

    Google Scholar 

  • Soni SK, Khire JM (2007) Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J Microbiol Biotechnol 23:1585–1593

    CAS  Google Scholar 

  • Sreeramulu G, Srinivasa D, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388

    CAS  Google Scholar 

  • Suzuki U, Yoshimura K, Takaishi M. (1907) Ueber ein Enzym “Phytase” das “Anhydro-oxy-methylen diphosphorsaure” Spaltet. Tokyo Imperal Univ Coll Agric Bull 7:503–512

    Google Scholar 

  • Tseng YH, Fang T, Tseng SM (2000) Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiol 45:121–127

    CAS  Google Scholar 

  • Tyagi PK, Verma SVS (1998) Phytate phosphorus content of some common poultry feed stuffs. Indian J Poult Sci 33:86–88

    Google Scholar 

  • Ullah AH, Gibson DM (1987) Extracellular phytase (EC 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem 17:63–91

    CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ. (2008) Unfolding and refolding of Aspergillus niger PhyB phytase: role of disulfide bridges. J Agric Food Chem 56:8179–818.

    CAS  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol 35:3–14

    CAS  Google Scholar 

  • Vats P, Banerjee UC (2005) Biochemical characterization of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J Ind Microbiol Biotechnol 32:141–147

    CAS  Google Scholar 

  • Veum TL, Bollinger DW, Buff CE, Bedford MR (2006) A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus. J Anim Sci 84:1147–1158

    CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast Pichia anomala. Biotechnol Lett 23:551–554

    CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    CAS  Google Scholar 

  • Watanabe T, Ozaki N, Iwashita K, Fujii V, Iefuji H (2008) Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus. Appl Microbiol Biotechnol 80:331–338

    CAS  Google Scholar 

  • Wild A (1988) Russell’s soil condition and plant growth. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Wodzinski RJ, Ullah AH (1996) Phytase. Adv Appl Microbiol 42:263–302

    CAS  Google Scholar 

  • Wu Z, Satter LD, Sojo R (2000) Milk production, reproductive performance, and fecal excretion of phosphorus by dairy cows fed three amounts of phosphorus. J Dairy Sci 83:1028–1041

    CAS  Google Scholar 

  • Wyatt CL, Parr T, Bedford M (2008) Mechanisms of action for supplemental NSP and phytase enzymes in poultry diets. Carolina Feed Industry Association. 35th Poultry Nutrition Conference, USA, pp 12–22

    Google Scholar 

  • Xiao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36

    CAS  Google Scholar 

  • Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144:1565–1573

    CAS  Google Scholar 

  • Zhang R, Yang P, Huang H, Shi P, Yuan T, Yao B (2011) Two types of phytases (histidine acid phytase and β-propeller phytase) in Serratia sp. TN49 from the gut of Batocera horsfieldi (Coleoptera) larvae. Curr Microbiol 63:408–415

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhjot Kaur Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, V., Singh, D., Sangwan, P., Gill, P. (2015). Management of Environmental Phosphorus Pollution Using Phytases: Current Challenges and Future Prospects. In: Kaushik, G. (eds) Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2123-4_7

Download citation

Publish with us

Policies and ethics