Skip to main content

Bioelectrochemical Systems (BES) for Microbial Electroremediation: An Advanced Wastewater Treatment Technology

  • Chapter
  • First Online:
Book cover Applied Environmental Biotechnology: Present Scenario and Future Trends

Abstract

Bioelectrochemical systems (BES) have been employed for various applications in recent years including energy production, wastewater treatment, electrosynthesis and desalination. The present chapter emphasizes the advantages and potential applications of BES for the remediation of recalcitrant pollutants present in various types of wastewaters. Bioelectricity generated from the treatment of these wastewaters is an additional energy output from the process along with the possible environmental solution. Since, the treatment mechanism of BES is combination of both microbial and electrochemical reactions, the process can be termed as microbial electroremediation. The current chapter depicts the principles of bioelectrochemical remediation, possible mechanisms at anode and cathode. Further, a comprehensive overview on different types of wastewater as well as nutrients, pollutants and toxic substances, utilized as electron donors or acceptors for their treatment, is discussed in detail under different categories. Microbial electroremediation is still an emerging field of science aimed at harnessing energy from wastewater treatment and it has a potential to boon the waste remediation with net positive energy gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559

    Article  CAS  Google Scholar 

  • Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone, M (2010) Characterization of an electro-active biocathode capable of dechlorinatingtrichloroethene and cis-dichloroethene to ethene. Biosens Bioelectron 25(7):1796–1802

    Article  CAS  Google Scholar 

  • Behera M, Jana PS, More TT, Ghangrekar MM (2010) Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelechem 79:228–233

    Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity generation by Geobactersulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  • Brastad KS, Zhen He (2013) Water softening using microbial desalination cell technology, Desalination 309:32–37

    Google Scholar 

  • Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Nealson KH (2007) Current production and metal oxide reduction by Shewanellaoneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73(21):7003–7012

    Article  CAS  Google Scholar 

  • Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685–4691

    Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152

    Article  CAS  Google Scholar 

  • Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single chamber microbial fuel cells. Biosens Bioelectron 24:855–860

    Google Scholar 

  • Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31:1211–1216

    Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Bioresour Technol 110:517–525

    Article  CAS  Google Scholar 

  • Chang S, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Elecytrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16:163–177

    CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  • Chen X, Xia X, Liang P, Cao X, Sun H, Huang X (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45:2465–2470

    Article  CAS  Google Scholar 

  • Chen X, Liang P, Wei Z, Zhang X, Huang X (2012) Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation. Biores Technol 119:88–93

    Google Scholar 

  • Chen S, Luo H, Liu G, Zhang R, Wang H, Qin B, Hou Y (2013) Integrated utilization of seawater using a five-chamber bioelectrochemical system. J Membr Sci 444:16–21

    Article  CAS  Google Scholar 

  • Cheng J, Zhu X, Ni J, Borthwick A (2010) Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters. Bioresour Technol 101:2729–2734

    Google Scholar 

  • Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Coma M, Puig S, Pous N, Balaguer MD, Colprim J (2013) Biocatalysedsulphate removal in a BES cathode. Bioresource Technol 130:218–223

    Article  CAS  Google Scholar 

  • Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Yan Y (2010) Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 101(10):3500–3505

    Article  CAS  Google Scholar 

  • Durruty I, Bonanni PS, González JF, Busalmen JP (2012) Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresour Technol 105:81–87

    Google Scholar 

  • Dutta PK, Keller J, Yuan Z, Rozendal RA, Rabaey K (2009) Role of sulfur during acetate oxidation in biological anodes. Environ Sci Technol 43:3839–3845

    Article  CAS  Google Scholar 

  • Elakkiya E, Matheswaran M (2013) Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell. Biores Technol 136:407–412

    Google Scholar 

  • ElMekawy A, Diels L, De Wever H, Pant D (2013) Valorization of cereal based biorefinery byproducts: reality and expectations. Environ Sci Technol 47(16):9014–9027

    Article  CAS  Google Scholar 

  • ElMekawy A, Srikanth S, Vanbroekhoven K, De Wever H, Pant D (2014) Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES). J Power Sour 262:183–191

    Article  CAS  Google Scholar 

  • ElMekawy A, Hegab HM, Pant D (2014) The near-future integration of microbial desalination cells with reverse osmosis technology. Energy Environ Sci. doi:10.1039/C4EE02208D

    Google Scholar 

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    Google Scholar 

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    Google Scholar 

  • Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101:1233–1238

    Google Scholar 

  • Frijters CTMJ, Vos RH, Scheffer G, Mulder R (2006) Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res 40(6):1249–1257

    Article  CAS  Google Scholar 

  • Gálvez A, Greenman J, Ieropoulos I (2009) Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technol 100:5085–5091

    Article  Google Scholar 

  • Goud RK, Babu PS, Venkata Mohan SV (2011) Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): Bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy 36:6210–6218

    Google Scholar 

  • Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol 44:112–119

    Article  CAS  Google Scholar 

  • Hamelers HV, TerHeijne A, Sleutels TH, Jeremiasse AW, Strik DP, Buisman CJ (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1673–1685

    Article  CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  CAS  Google Scholar 

  • Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537

    Google Scholar 

  • Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacterelectrodiphilus gene.nov., sp.nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030

    Article  CAS  Google Scholar 

  • Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methe BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobactersulfurreducens. Environ Microbiol 8:1805–1815

    Article  CAS  Google Scholar 

  • Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355

    Google Scholar 

  • Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  CAS  Google Scholar 

  • Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G (1997) Olive oil wastewater treatment with the use of an electrolysis system. Bioresour Technol 61(2):163–170

    Article  CAS  Google Scholar 

  • Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 45:4652–4657

    Article  CAS  Google Scholar 

  • Jiang H, Luo S, Shi X, Dai M, Guo R (2012) A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation. Biotechnol Lett 34:1269–1274

    Google Scholar 

  • Kaewkannetra P, Chiwes W, Chiu TY (2011) Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel 90:2746–2750

    Google Scholar 

  • Kalleary S, Mohammed Abbas F, Ganesan A, Meenatchisundaram S, Srinivasan B, Packirisamy A. S. B., & Muthusamy, S (2014) Biodegradation and bioelectricity generation by Microbial Desalination Cell. International Biodeterioration & Biodegradation 92:20–25

    Google Scholar 

  • Kelly PT, He Z (2014a) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  CAS  Google Scholar 

  • Kelly PT, He Z (2014b) Understanding the application niche of microbial fuel cells in a cheese wastewater treatment process. Biores Technol 157:154–160

    Google Scholar 

  • Kim Y. Logan BE (2011) Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ Sci Technol 45:5840–5845

    Article  CAS  Google Scholar 

  • Kim Y, Logan BE (2013) Microbial desalination cells for energy production and desalination. Desalination 308:122–130

    Article  CAS  Google Scholar 

  • Kiran Kumar A, Reddy MV, Chandrasekhar K, Srikanth S, Venkata Mohan S (2012) Endocrine disruptive estrogens role in electron transfer: bio-electrochemical remediation with microbial mediated electrogenesis. Bioresour Technol 104:547–556

    Article  CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Kokabian B, Gude VG (2013) Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ Sci Process Impacts 15(12):2178–2185

    Article  CAS  Google Scholar 

  • Lefebvre O, Mamun A, Ng HY (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58:881–885

    Article  CAS  Google Scholar 

  • Lefebvre O, Tan Z, Shen Y, Ng HY (2013) Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material. Bioresour Technol 127:158–164

    Article  CAS  Google Scholar 

  • Li XM, Cheng KY, Selvam A, Wong JWC (2013) Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochem 48:283–288

    Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:516–528

    Article  Google Scholar 

  • López-López A, Expósito E, Antón J, Rodríguez-Valera F, Aldaz A (1999) Use of Thiobacillusferrooxidans in a coupled microbiological–electrochemical system for wastewater detoxification. Biotechnol Bioeng 63(1):79–86

    Article  Google Scholar 

  • Luo Y, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264

    Google Scholar 

  • Luo Y, Liu G, Zhang R, Zhang C (2010) Power generation from furfural using the microbial fuel cell. J Power Sources 195:190–194

    Google Scholar 

  • Luo H, Jenkins PE, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol 45:340–344

    Article  CAS  Google Scholar 

  • Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol 105:60–66

    Article  CAS  Google Scholar 

  • Mahmoud M, Parameswaran P, Torres CI, Rittmann BE (2014) Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell. Bioresour Technol 151:151–158

    Article  CAS  Google Scholar 

  • Mehanna M, Kiely PD, Call DF, Logan BE (2010a) Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol 44:9578–9583

    Article  CAS  Google Scholar 

  • Mehanna M, Saito T, Yan J, Hickner M, Cao X, Huang X, Logan BE (2010b) Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci 3:1114–1120

    Article  CAS  Google Scholar 

  • Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Google Scholar 

  • Mohanakrishna G, Venkata Mohan S, Sarma PN (2010a) Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J Hazard Materials 177:487–494

    Google Scholar 

  • Mohanakrishna G, Venkata Mohan S, Sarma PN (2010b) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energy, 35:3440–3449

    Google Scholar 

  • Mu Y, Rabaey K, Rene A, Zhiguo R, Yuan Keller J (2009a) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143

    Article  CAS  Google Scholar 

  • Mu Y, Rozendal RA, Rabaey K, Yuan Z, Keller J (2009b) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43:8690–8695

    Article  CAS  Google Scholar 

  • Nemati M, Harrison STL, Hansford GS, Webb C (1998) Biological oxidation of ferrous sulphate by Thiobacillusferrooxidans: a review on the kinetic aspects. Biochem Eng J 1(3):171–190

    Article  CAS  Google Scholar 

  • Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Wat Res 39:4673–4682

    Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Satyawali Y, Gupta RK (2008) Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaetechrysosporium. J Environ Biol 29:79–84

    CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2(4):1248–1263

    Article  CAS  Google Scholar 

  • Pant D, Arslan D, Van Bogaert G, Gallego YA, De Wever H, Diels L, Vanbroekhoven K (2013) Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environ Technol 34(13–14):1935–1945

    Article  CAS  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Biores Technol 100:5132–5139

    Google Scholar 

  • Peng Y, Zhu G (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol 73:15–26

    Article  CAS  Google Scholar 

  • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonashydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223(1):129–134.

    Article  CAS  Google Scholar 

  • Ping Q, Cohen B, Dosoretz C, He Z (2013) Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells. Desalination 325:48–55

    Article  CAS  Google Scholar 

  • Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, Logan BE (2012) Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 106:89–94

    Article  CAS  Google Scholar 

  • Qu Y, Feng Y, Liu J, He W, Shi X, Yang Q, Logan BE (2013) Salt removal using multiple microbial desalination cells under continuous flow conditions. Desalination 317:17–22

    Google Scholar 

  • Rabaey K, VandeSompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, DeSchamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224

    Article  CAS  Google Scholar 

  • Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobic–aerobic system. Appl Microbiol Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  • Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786

    Article  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005). A microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  CAS  Google Scholar 

  • Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206

    Google Scholar 

  • Shantaram A, Beyenal H, Veluchamy RRA, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cell. Environ Sci Technol 39:5037–5042

    Article  CAS  Google Scholar 

  • Sharma M, Jain P, Varanasi JL, Lal B, Rodríguez J, Lema JM, Sarma PM (2013) Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. Bioresour Technol 150:172–180

    Article  CAS  Google Scholar 

  • Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Bioresour Technol 131:564–571

    Article  CAS  Google Scholar 

  • Srikanth S, Venkata Mohan S (2012) Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics. Bioresour Technol 119:241–251

    Article  CAS  Google Scholar 

  • Srikanth S, Venkata Mohan S (2012) Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC). Bioresour Technol 123:480–487

    Article  CAS  Google Scholar 

  • Srikanth S, Maesen M, Dominguez-Benetton X, Vanbroekhoven K, Pant D (2014) Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour Technol 165:350–354. doi:10.1016/j.biortech.2014.01.129

    Google Scholar 

  • Strathmann H (2004) Ion-exchange membrane separation processes. Elsevier, Amsterdam

    Google Scholar 

  • Strik DPBTB, Terlouw H, Hubertus VM, Buisman CJN (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668

    Article  CAS  Google Scholar 

  • Sun M, Sheng GP, Mu ZX, Liu XW, Chen YZ, Wang HL, Yu HQ (2009) Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J Power Sources 191:338–343

    Article  CAS  Google Scholar 

  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    Article  CAS  Google Scholar 

  • Torres CI (2014) On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications. Curr Opin Biotech 27:107–114

    Article  CAS  Google Scholar 

  • Van der Zee FP, Villaverde S (2005) Combined anaerobic-aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res 39:1425–1440

    Article  CAS  Google Scholar 

  • Velvizhi G, Venkata Mohan S (2011) Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour Technol 102:10784–10793

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Chandrasekhar K (2011) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 102:9532–9541

    Article  Google Scholar 

  • Venkata Mohan S, Srikanth S (2011) Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Bioresour Technol 102(22):10210–10220

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Srikanth S, Sarma PN (2009a) Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochemistry 75:130–135

    Article  Google Scholar 

  • Venkata Mohan S, Raghavulu SV, Peri D, Sarma PN (2009b) Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron 24:2021–2027

    Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN (2010a) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51(1):32–39

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Sarma PN (2010b) Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour Technol 101:970–976

    Google Scholar 

  • Venkata Mohan S, Suresh Babu P, Srikanth S (2013) Azo dye remediation in periodic discontinuous batch mode operation: evaluation of metabolic shifts of the biocatalyst under aerobic, anaerobic and anoxic conditions. Sep Purif Technol 118:196–208

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Velvizhi G, Lenin Babu M, Srikanth S (2014a) Microbial catalyzed electrochemical systems: Critical factors and Recent advancements. Ren Sus Energy Reviews 165:355–364

    Google Scholar 

  • Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M (2014b) Microbial catalyzed electrochemical systems: A bio-factory with multi-facet applications. Bioresour Technol 165:355–364. doi:10.1016/j.biortech.2014.03.048

    Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    Article  CAS  Google Scholar 

  • Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) The use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43:6870–6874

    Article  CAS  Google Scholar 

  • Wen Q, Kong F, Zheng H, Cao D, Ren Y, Yin J (2011) Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem Eng J 168:572–576

    Google Scholar 

  • Werner CM, Logan BE, Saikaly PE, Amy GL (2013) Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. J Membrane Sci 428:116–122

    Google Scholar 

  • Wilk IJ, Altmann RS, Berg JD (1987) Antimicrobial activity of electrolyzed saline solutions. Sci Total Environ 63:191–197

    Article  CAS  Google Scholar 

  • Yang F, Ren L, Pu Y, Logan BE (2013) Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresour Technol 128:784–787

    Google Scholar 

  • Yazdi RH, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407

    Article  Google Scholar 

  • Yemashova N, Kalyuzhnyi S (2006) Microbial conversion of selected azo dyes and their breakdown products. Water Sci Technol 53(11):163–171

    Article  CAS  Google Scholar 

  • Zhang Y, Angelidaki I (2013) A new method for in-situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC). Water Res 47(5):1827–1836

    Article  CAS  Google Scholar 

  • Zhang B, He Z (2012) Energy production, use and saving in a bioelectrochemical desalination system. RSC Adv 2(28):10673–10679

    Article  CAS  Google Scholar 

  • Zhang B, He Z (2013) Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell. J Membrane Sci 441:18–24

    Article  CAS  Google Scholar 

  • Zhang JN, Zhao QL, You SJ, Jiang JQ, Ren NQ (2008) Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Sci Technol 57:1017–1021

    Article  CAS  Google Scholar 

  • Zhang B, Zhao H, Zhou S, Shi C, Wang C, Ni J (2009) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100:5687–93

    Google Scholar 

  • Zhang C, Li M, Liu G, Luo H, Zhang R (2009) Pyridine degradation in the microbial fuel cell. J Hazard Mater 172:465–471

    Google Scholar 

  • Zhang G, Zhao Q, Jiao Y, Wang K, Lee D-J, Ren N (2012) Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosens Bioelectron 31:537–543

    Google Scholar 

  • Zhang Y, Min B, Huang L, Angelidaki I (2009) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environmental Microbiol 75:3389–3395

    Google Scholar 

  • Zhang X, Feng H, Shan D, Shentu J, Wang M, Yin J, Ding Y (2014) The effect of electricity on 2–fluoroaniline removal in a bioelectrochemically assisted microbial system (BEAMS). Electrochim Acta 135:439–446

    Google Scholar 

  • Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-Rossa C, Thumser AE, Slade RC (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42(13):4971–4976

    Article  CAS  Google Scholar 

  • Zhao G, Ma F, Wei L, Chua H, Chang C-C, Zhang X-J (2012) Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manag 32:1651–1658

    Google Scholar 

  • Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem comm 11:274–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mohanakrishna, G., Srikanth, S., Pant, D. (2015). Bioelectrochemical Systems (BES) for Microbial Electroremediation: An Advanced Wastewater Treatment Technology. In: Kaushik, G. (eds) Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2123-4_10

Download citation

Publish with us

Policies and ethics