Advertisement

The Minimal Surfaces Over the Slanted Half-Planes, Vertical Strips and Single Slit

  • Liulan Li
  • Saminathan Ponnusamy
  • Matti Vuorinen
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this chapter, we discuss the minimal surfaces over the slanted half-planes, vertical strips, and single slit whose slit lies on the negative real axis. The representation of these minimal surfaces and the corresponding harmonic mappings are obtained explicitly. Finally, we illustrate the harmonic mappings of each of these cases together with their minimal surfaces pictorially with the help of mathematica. The content of this chapter is a shorter version of an article of the author’s report of 2011 and published in arXiv (http://arxiv.org/pdf/1204.2890.pdf) in 2012.

Keywords

Harmonic Mapping Minimal Surface Blaschke Product Vertical Strip Strip Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research of Liulan Li was supported by National Science Foundation (NSF) of China (No. 11201130), Hunan Provincial Natural Science Foundation of China (No. 14JJ1012) and construct program of the key discipline in Hunan province. Saminathan Ponnusamy is currently on leave from the Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India. The research of Matti Vuorinen was supported by the Academy of Finland, Project 2600066611. The authors thank the referee for useful comments.

References

  1. 1.
    Clunie, J.G., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I 9, 3–25 (1984)MATHMathSciNetGoogle Scholar
  2. 2.
    Dorff, M.: Harmonic univalent mappings onto asymmetric vertical strips. In: Papamichael, N., Ruscheweyh, St., Saff, E.B. (eds.) Computational Methods and Functional Theory 1997, 171–175. World Scientific Publishing, River Edge (1999)Google Scholar
  3. 3.
    Dorff, M., Muir, S.: A family of minimal surfaces and univalent planar harmonic mappings. Abstr. Appl. Anal. 2014, 8 (2014). (Art. 1988. ID476061)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dorff, M., Rolf, J.S.: Soap films, differential geometry and minimal surfaces. In: Dorff, M. (ed.) Explorations in Complex analysis, Classroom Resource Material, pp. 85–159. Mathematical Association of America, Washington, DC (2012)Google Scholar
  5. 5.
    Dorff, M., Nowak, M., Wo\loszkiewicz, M.: Convolutions of harmonic convex mappings. Complex Var. Elliptic Equ. 57(5), 489–503 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Duren, P.: Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  7. 7.
    Heinz, E.: Über die Losungen der Minimalflachengleichung. Nachr. Akad. Wiss. Gott. Math. Phys. K1, 51–56 (1952)MathSciNetGoogle Scholar
  8. 8.
    Hengartner, W., Schober, G.: Univalent harmonic functions. Trans. Am. Math. Soc. 299(1), 1–31 (1987)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Hengartner, W., Schober, G.: Curvature estimates for some minimal surfaces. In: Hersch, J., Huber, A. (eds.) Complex Analysis, pp. 87–100. Birkhauser, Basel (1988)Google Scholar
  10. 10.
    Jun, S.H.: Curvature estimates for minimal surfaces. Proc. Am. Math. Soc. 114(2), 527–553 (1992)CrossRefMATHGoogle Scholar
  11. 11.
    Jun, S.H.: Mappings related to minimal surfaces. J. Chung. Math. Soc. 16(4), 313–318 (2006)Google Scholar
  12. 12.
    Livingston, A.E.: Univalent harmonic mappings. Ann. Polon. Math. 57(1), 57–70 (1992)MATHMathSciNetGoogle Scholar
  13. 13.
    Livingston, A.E.: Univalent harmonic mappings II. Ann. Polon. Math. 67(2), 131–145 (1997)MATHMathSciNetGoogle Scholar
  14. 14.
    Nowak, M., Wo\loszkiewicz, M.: Gauss curvature estimates for minimal graphs. Ann. Univ. Mariae Curie-Sk\lodowska Sect. A 65(2), 113–120 (2011)MATHGoogle Scholar
  15. 15.
    Ruskeepää, H.: Mathematica Navigator, 3rd ed. Academic Press, Boston (2009)Google Scholar
  16. 16.
    Sheil-Small, T.: On the Fourier series of a step function. Mich. Math. J. 36, 459–475 (1989)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Liulan Li
    • 1
  • Saminathan Ponnusamy
    • 2
  • Matti Vuorinen
    • 3
  1. 1.Department of Mathematics and Computational ScienceHengyang Normal UniversityHunanPeople’s Republic of China
  2. 2.Indian Statistical Institute (ISI) Chennai CentreSETS (Society for Electronic Transactions and security)ChennaiIndia
  3. 3.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations