Boundary Behavior of Univalent Harmonic Mappings

A Survey of Recent Boundary Behavior Results of Univalent Harmonic Mappings
  • Daoud Bshouty
  • Abdallah Lyzzaik
Part of the Trends in Mathematics book series (TM)


This chapter is a survey of the boundary behavior properties of univalent harmonic mappings of the unit disk \(\mathbb{D}\) over the last two decades. Particular emphasis has been given to the boundary behavior of univalent harmonic mappings “onto” \(\mathbb{D}\) in the sense of Hengartner and Schober.


Harmonic Mapping Hardy Space Boundary Function Blaschke Product Boundary Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abu-Muhanna, Y., Lyzzaik, A.: The boundary behavior of harmonic univalent maps. Pac. J. Math. 141, 1–20 (1990)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Beurling, A.: Sur les ensembles exceptionels. Acta Math. 72, 1–13.Google Scholar
  3. 3.
    Bshouty, D., Hengartner, W.: Boundary values versus dilatations of harmonic mappings. J. Anal. Math. 72, 141–164 (1997)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bshouty, D., Lyzzaik, A.: Uniqueness of harmonic mappings into bounded strictly starlike domains with rectifiable boundary. Comput. Method Funct. Theory 8(2), 433–446 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bshouty, D., Lyzzaik, A.: Problems and conjectures in planar harmonic mappings. J. Anal. 18, 698–1 (2010)MathSciNetGoogle Scholar
  6. 6.
    Bshouty, D., Hengartner, W., Hossian, O.: Harmonic typically real mappings. Math. Proc. Camb. Philos. Soc. 19, 673–680 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bshouty, D., Lyzzaik, A., Weitsman, A.: Uniqueness of harmonic mappings with Blaschke dilatations. J. Geom. Anal. 17(1), 41–47 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bshouty, D., Lyzzaik, A., Weitsman, A.: On the boundary behaviour of univalent harmonic mappings onto convex domains. Comput. Method Funct. Theory 8(1–2), 261–275 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bshouty, D., Lyzzaik, A., Weitsman, A.: On the boundary behaviour of univalent harmonic mappings. Ann. Acad. Sci. Fenn. Math. 37, 135–147 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. 9(2), 3–25 (1984)MATHMathSciNetGoogle Scholar
  11. 11.
    Duren, P.: Harmonic mappings in the plane. Cambridge University Press, Cambridge (2004)Google Scholar
  12. 12.
    Duren, P., Khavinson, D.: Boundary correspondence and dilatation of harmonic mappings. Complex Var. Theory Appl. 33(1–4), 105–112 (1997)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Garnett, J., Marshall, D.: Harmonic measure. Cambridge University Press, Cambridge (2005)Google Scholar
  14. 14.
    Frostman, O.: Potential d’equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Mat. Sem., Vol. 3 (1935),1-118.Google Scholar
  15. 15.
    Gergen, J., Dressel, F.: Mapping by p-regular functions. Duke Math. J. 18, 185–210 (1951)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gergen, J., Dressel, F.: Uniqueness for by p-regular mapping. Duke Math. J. 19, 435–444 (1952)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hengartner, W., Schober, G.: On the boundary behavior of orientation-preserving harmonic mappings. Complex Var. Theory Appl. 5, 197–208 (1986)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hengartner, W., Schober, G.: Harmonic mappings with given dilatation. J. Lon. Math. Soc. 33(2), 473–483 (1986)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Heinz, E.: On one-to-one harmonic mappings. Pac. J. Math. 9(1), 101–105 (1959)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kalaj, D.: O harmonic diffeomorphisms of the unit disc onto a convex domain. Complex Var. Theory Appl. 48, 175–187 (2003)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Laugesen, R.: Planar harmonic maps with inner and Balschke dilatations. J. London Math. Soc. 56(2), 37–48 (1997)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lyzzaik, A.: Local properties of light harmonic mappings. Can. J. Math. 44, 135–153 (1992)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 425, 1–10 (1968)MathSciNetGoogle Scholar
  24. 24.
    Nowak, M.: Integral means of univalent harmonic maps. Ann. Univ. Mariae Curie-Sklodwska 50, 155–162 (1996)MATHGoogle Scholar
  25. 25.
    Protas, D.: On the accumulation of the zeros of a Blaschke product at a boundary point. Proc. Am. Math. Soc. 34, 489–496 (1972)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Sheil-Small, T.: On the fourier series of a step function. Mich. Math. J. 36, 459–475 (1989)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Tsuji, M.: Potential Theory in Modern Function Theory, 2nd Edn. Chelsea Publishing Company, White River (1975)MATHGoogle Scholar
  28. 28.
    Weitsman, A.: On the dilatation of univalent harmonic mappings. Proc. Am. Math. Soc. 126(2), 447–452 (1998)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MathematicsTechnionHaifaIsrael
  2. 2.Department of MathematicsAmerican University of BeirutBeirutLebanon

Personalised recommendations