Boundary Behavior of Univalent Harmonic Mappings

A Survey of Recent Boundary Behavior Results of Univalent Harmonic Mappings
Part of the Trends in Mathematics book series (TM)


This chapter is a survey of the boundary behavior properties of univalent harmonic mappings of the unit disk \(\mathbb{D}\) over the last two decades. Particular emphasis has been given to the boundary behavior of univalent harmonic mappings “onto” \(\mathbb{D}\) in the sense of Hengartner and Schober.


Harmonic Mapping Hardy Space Boundary Function Blaschke Product Boundary Behavior 


  1. 1.
    Abu-Muhanna, Y., Lyzzaik, A.: The boundary behavior of harmonic univalent maps. Pac. J. Math. 141, 1–20 (1990)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Beurling, A.: Sur les ensembles exceptionels. Acta Math. 72, 1–13.Google Scholar
  3. 3.
    Bshouty, D., Hengartner, W.: Boundary values versus dilatations of harmonic mappings. J. Anal. Math. 72, 141–164 (1997)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bshouty, D., Lyzzaik, A.: Uniqueness of harmonic mappings into bounded strictly starlike domains with rectifiable boundary. Comput. Method Funct. Theory 8(2), 433–446 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bshouty, D., Lyzzaik, A.: Problems and conjectures in planar harmonic mappings. J. Anal. 18, 698–1 (2010)MathSciNetGoogle Scholar
  6. 6.
    Bshouty, D., Hengartner, W., Hossian, O.: Harmonic typically real mappings. Math. Proc. Camb. Philos. Soc. 19, 673–680 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bshouty, D., Lyzzaik, A., Weitsman, A.: Uniqueness of harmonic mappings with Blaschke dilatations. J. Geom. Anal. 17(1), 41–47 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bshouty, D., Lyzzaik, A., Weitsman, A.: On the boundary behaviour of univalent harmonic mappings onto convex domains. Comput. Method Funct. Theory 8(1–2), 261–275 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bshouty, D., Lyzzaik, A., Weitsman, A.: On the boundary behaviour of univalent harmonic mappings. Ann. Acad. Sci. Fenn. Math. 37, 135–147 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. 9(2), 3–25 (1984)MATHMathSciNetGoogle Scholar
  11. 11.
    Duren, P.: Harmonic mappings in the plane. Cambridge University Press, Cambridge (2004)Google Scholar
  12. 12.
    Duren, P., Khavinson, D.: Boundary correspondence and dilatation of harmonic mappings. Complex Var. Theory Appl. 33(1–4), 105–112 (1997)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Garnett, J., Marshall, D.: Harmonic measure. Cambridge University Press, Cambridge (2005)Google Scholar
  14. 14.
    Frostman, O.: Potential d’equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Mat. Sem., Vol. 3 (1935),1-118.Google Scholar
  15. 15.
    Gergen, J., Dressel, F.: Mapping by p-regular functions. Duke Math. J. 18, 185–210 (1951)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gergen, J., Dressel, F.: Uniqueness for by p-regular mapping. Duke Math. J. 19, 435–444 (1952)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hengartner, W., Schober, G.: On the boundary behavior of orientation-preserving harmonic mappings. Complex Var. Theory Appl. 5, 197–208 (1986)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hengartner, W., Schober, G.: Harmonic mappings with given dilatation. J. Lon. Math. Soc. 33(2), 473–483 (1986)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Heinz, E.: On one-to-one harmonic mappings. Pac. J. Math. 9(1), 101–105 (1959)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kalaj, D.: O harmonic diffeomorphisms of the unit disc onto a convex domain. Complex Var. Theory Appl. 48, 175–187 (2003)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Laugesen, R.: Planar harmonic maps with inner and Balschke dilatations. J. London Math. Soc. 56(2), 37–48 (1997)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lyzzaik, A.: Local properties of light harmonic mappings. Can. J. Math. 44, 135–153 (1992)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 425, 1–10 (1968)MathSciNetGoogle Scholar
  24. 24.
    Nowak, M.: Integral means of univalent harmonic maps. Ann. Univ. Mariae Curie-Sklodwska 50, 155–162 (1996)MATHGoogle Scholar
  25. 25.
    Protas, D.: On the accumulation of the zeros of a Blaschke product at a boundary point. Proc. Am. Math. Soc. 34, 489–496 (1972)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Sheil-Small, T.: On the fourier series of a step function. Mich. Math. J. 36, 459–475 (1989)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Tsuji, M.: Potential Theory in Modern Function Theory, 2nd Edn. Chelsea Publishing Company, White River (1975)MATHGoogle Scholar
  28. 28.
    Weitsman, A.: On the dilatation of univalent harmonic mappings. Proc. Am. Math. Soc. 126(2), 447–452 (1998)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MathematicsTechnionHaifaIsrael
  2. 2.Department of MathematicsAmerican University of BeirutBeirutLebanon

Personalised recommendations