Skip to main content

Bone Marrow Versus Dental Pulp Stem Cells in Osteogenesis

  • Chapter
  • First Online:
Stem Cell Therapy for Organ Failure

Abstract

Although the consideration of stem cells is currently approaching its hundredth year as one of the organizing principles of developmental biology, it demonstrates no sign of losing its youthful luster. A range of sources of stem cells have been identified that has the potential to self-renewal and capacity to form multiple lineages. Regardless of the discovery of existence of stem cells in various tissues and body fluids, bone marrow has been potentially considered as a persuasive and primeval source of stem cells for treating a wide horizon of disease [1, 2]. Although bone marrow-derived MSCs could be differentiated into mesodermal and non-mesodermal lineages [3–5], osteoblasts, responsible for osteogenesis, and hematopoietic cells, for hematopoiesis are closely associated with the bone marrow, suggesting a reciprocal relationship between the two [6]. Much of the work in MSCs found within the bone marrow stroma on its in vitro and in vivo applications involved in osteogenesis, adipogenesis, cartilage, and muscle formation including osteoblast, osteocytes, adipocytes, chondrocytes, myoblast, and myocytes are gaining importance due to its inherent bone formation capacity [7]. Hence, bone marrow resident stem cells made them the most primitive and promising source from ancient days for treating bone-related diseases. Nevertheless, it is unfortunate that these sources could have not been effective in treatment of all possible diseases due to various disadvantages of BM-MSCs; one of the main drawbacks is that osteogenic potential of bone marrow cells decreases with age [8], and hence, the search for alternate sources of adult stem cells is also underway. It has been demonstrated that stromal adipocytes in bone marrow cavity increases as age increases. In other words, adipocyte accumulation in the human bone marrow stroma correlates with trabecular bone loss with aging [9–12]. Thus, adipose stromal cells both isolated either from bone marrow or from adipose tissue itself has evolved as a contemporary source for bone regeneration [13, 14]. However, we predict that identifying a source that will be similar to the characteristics of bone marrow, possessing inherent bone-forming capacity might be more valuable in bone tissue engineering, repair, and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M (2009) Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 7:241–248

    PubMed  Google Scholar 

  2. Miura Y, Gao Z, Miura M, Seo B-M, Sonoyama W, Chen W, Gronthos S, Zhang L, Shi S (2006) Mesenchymal stem cell-organized bone marrow elements: an alternative hematopoietic progenitor resource. Stem Cells 24:2428–2436

    Article  CAS  PubMed  Google Scholar 

  3. Hattan N, Kawaguchi H, Ando K, Kuwabara E, Fujita J, Murata M, Suematsu M, Mori H, Fukuda K (2005) Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 65:334–344

    Article  CAS  PubMed  Google Scholar 

  4. Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24:2319–2345

    Article  CAS  PubMed  Google Scholar 

  5. Oh S-H, Muzzonigro TM, Bae S-H, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617

    Article  CAS  PubMed  Google Scholar 

  6. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  CAS  PubMed  Google Scholar 

  7. Kopp H-G, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20:349–356

    Article  CAS  PubMed  Google Scholar 

  8. Rebelatto CK, Aguiar AM, Moreto MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913

    Article  CAS  Google Scholar 

  9. Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop 80:147–154

    Article  CAS  PubMed  Google Scholar 

  10. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164

    Article  CAS  PubMed  Google Scholar 

  12. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rodriguez AM, Elabd C, Amri E-Z, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128

    Article  CAS  PubMed  Google Scholar 

  14. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kanafi MM, Pal R, Gupta PK (2013) Phenotypic and functional comparison of optimum culture conditions for upscaling of dental pulp stem cells. Cell Biol Int 37(2):126–136

    Article  CAS  PubMed  Google Scholar 

  16. Kanafi M, Ramesh A, Gupta P, Bhonde R (2014) Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J 47(7):687–697

    Article  CAS  PubMed  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  18. Kamran Kaveh, Rashid Ibrahim, Md. Zuki Abu Bakar, Tengku Azmi Ibrahim (2011) Mesenchymal stem cells, osteogenic lineage and bone tissue engineering: a review. J Anim Vet Adv 10:2317–2330

    Google Scholar 

  19. Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T (2002) Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 195:1549–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osteointegration. Eur Spine J 10:S96–S101

    Article  PubMed Central  PubMed  Google Scholar 

  21. Patel DM, Shah J, Srivastava AS (2013). Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int:496218

    Google Scholar 

  22. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386

    Article  CAS  PubMed  Google Scholar 

  23. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2003) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5): 947–955

    Article  Google Scholar 

  24. Griffin M, Iqbal SA, Bayat A (2011) Exploring the application of mesenchymal stem cells in bone repair and regeneration. J Bone Joint Surg Br 93(4):427–434

    Article  CAS  PubMed  Google Scholar 

  25. Stocum DL (2000) Stem cells in regenerative biology and medicine. Wound Repair Regen 9(6): 429–442

    Article  Google Scholar 

  26. Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155

    Article  CAS  PubMed  Google Scholar 

  27. Li M, Ikehara S (2013) Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int:132642

    Google Scholar 

  28. Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239

    Article  PubMed  Google Scholar 

  29. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WWK, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  CAS  PubMed  Google Scholar 

  30. Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ (2002) Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J Bone Miner Res 17:668–677

    Article  CAS  PubMed  Google Scholar 

  31. Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258

    Article  CAS  PubMed  Google Scholar 

  32. Gundle R, Joyner CJ, Triffitt JT (1995) Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone 16:597–601

    Article  CAS  PubMed  Google Scholar 

  33. Bruder SP, Kurth AA, Shea M et al (1998) Bone regeneration by implantation of purified culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162

    Article  CAS  PubMed  Google Scholar 

  34. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  CAS  PubMed  Google Scholar 

  35. Warnke PH, Springer IN, Wiltfang J et al (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770

    Article  CAS  PubMed  Google Scholar 

  36. Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116

    Article  PubMed  Google Scholar 

  37. Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Young RG, Butler DL, Weber W et al (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    Article  CAS  PubMed  Google Scholar 

  39. Awad HA, Boivin GP, Dressler MR et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431

    Article  CAS  PubMed  Google Scholar 

  40. Lim JK, Hui J, Li L et al (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20:899–910

    Article  PubMed  Google Scholar 

  41. Gronthos S, Zannettino ACW, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  CAS  PubMed  Google Scholar 

  42. Kuznetsov SA, Friedenstein AJ, Robey PG (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 97:561–570

    Article  CAS  PubMed  Google Scholar 

  43. Bruder SP, Horowitz MC, Mosca JD, Haynesworth SE (1997) Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21:225–235

    Article  CAS  PubMed  Google Scholar 

  44. Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA, Robey PG (1998) Repair of craniotomy defects using bone marrow stromal cells. Transplantation 66:1272–1278

    Article  CAS  PubMed  Google Scholar 

  45. Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  CAS  PubMed  Google Scholar 

  46. Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  CAS  PubMed  Google Scholar 

  47. Mankani MH, Krebsbach PH, Satomura K, Kuznetsov SA, Hoyt R, Robey PG (2001) Pedicled bone flap formation using transplanted bone marrow stromal cells. Arch Surg 136:263–270

    Article  CAS  PubMed  Google Scholar 

  48. Huang GT-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155

    Article  CAS  PubMed  Google Scholar 

  52. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171

    Article  PubMed Central  PubMed  Google Scholar 

  53. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  54. Suchanek J, Soukup T, Visek B, Ivancakova R, Kucerova L, Mokry J (2009) Dental pulp stem cells and their characterization. Biomed Pap Med Fac Univ Palacký Olomouc Czech 153(1):31–35

    Article  Google Scholar 

  55. Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M (2006) Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials 27(20):3766–3781

    Article  CAS  PubMed  Google Scholar 

  56. Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506

    Article  PubMed  Google Scholar 

  57. Yu J, He H, Tang C, Zhang G, Li Y, Wang R et al (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 11:32

    Article  PubMed Central  PubMed  Google Scholar 

  58. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S et al (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82(12):976–981

    Article  CAS  PubMed  Google Scholar 

  59. Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S et al (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D’Aquino R et al (2008) Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. J Craniofac Surg 19(3):616–625, discussion 626–627

    Article  PubMed  Google Scholar 

  61. Liu H-C EL-L, Wang D-S, Su F, Wu X, Shi Z-P et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 17(19-20):2417–2433

    Article  PubMed  Google Scholar 

  62. Mori G, Centonze M, Brunetti G, Ballini A, Oranger A, Mori C et al (2010) Osteogenic properties of human dental pulp stem cells. J Biol Regul Homeost Agents 24(2):167–175

    CAS  PubMed  Google Scholar 

  63. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8):1394–1402

    Article  PubMed  Google Scholar 

  64. Huang GT-J (2011) Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed) 3:788–800

    Article  Google Scholar 

  65. Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R et al (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 22(3):699–706

    CAS  PubMed  Google Scholar 

  66. Hazaimeh-NAL, Beattie J, Duggal M, Yang XB (2012). Angiogenic potential of human dental pulp stem cells for skeletal tissue engineering. J Bone Joint Surg:94-B (SUPP XXXVI 43)

    Google Scholar 

  67. Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells Dayt Ohio 26(3):638–645

    Article  Google Scholar 

  68. Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA (2006) The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 27(33):5658–5668

    Article  CAS  PubMed  Google Scholar 

  69. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J et al (2008) In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 34(4):421–426

    Article  PubMed Central  PubMed  Google Scholar 

  70. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969

    Article  PubMed  Google Scholar 

  71. Yang X, Walboomers XF, van den Beucken JJJP, Bian Z, Fan M, Jansen JA (2009) Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 15(2):367–375

    Article  CAS  PubMed  Google Scholar 

  72. D’ Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    Google Scholar 

  73. Bünger CM, Tiefenbach B, Jahnke A, Gerlach C, Freier T, Schmitz KP et al (2005) Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids. Biomaterials 26(15):2353–2360

    Article  PubMed  Google Scholar 

  74. Kasoju N, Bora U (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater Bristol Engl 7(4):045004

    Article  Google Scholar 

  75. Munoz-Pinto DJ, Jimenez-Vergara AC, Hou Y, Hayenga HN, Rivas A, Grunlan M et al (2012) Osteogenic potential of poly (ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels. Tissue Eng Part A 18(15–16):1710–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  PubMed  Google Scholar 

  77. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW et al (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23(12): 3041–3051

    Article  CAS  PubMed  Google Scholar 

  78. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S et al (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1(1):5

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116

    Article  CAS  PubMed  Google Scholar 

  80. Laino G, Graziano A, d‘ Aquino R, Pirozzi G, Lanza V, Valiante S et al (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206(3):693–701

    Article  CAS  PubMed  Google Scholar 

  81. Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K et al (2008) SHED repair critical-size calvarial defects in mice. Oral Dis 14(5):428–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. De Mendonça CA, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD et al (2008) Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 19(1):204–210

    Google Scholar 

  83. Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, Shi S et al (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 88(3): 249–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Liu H-C, L-L E, Wang D-S, Su F, Wu X, Shi Z-P et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly (L-lactide). Tissue Eng Part A 17(19–20):2417–2433

    Article  CAS  PubMed  Google Scholar 

  85. Aquino D’, Riccardo ADR, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    PubMed  Google Scholar 

  86. Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M et al (2006) Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng 12(4):821–830

    Article  CAS  PubMed  Google Scholar 

  87. Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68(4):773–782

    Article  PubMed  Google Scholar 

  88. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science (New York, NY) 324(5935):1673–1677

    Article  CAS  Google Scholar 

  90. Penolazzi L, Tavanti E, Vecchiatini R, Lambertini E, Vesce F, Gambari R et al (2010) Encapsulation of mesenchymal stem cells from Wharton’s jelly in alginate microbeads. Tissue Eng Part C Methods 16(1):141–155

    Article  CAS  PubMed  Google Scholar 

  91. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481

    Article  CAS  PubMed  Google Scholar 

  92. Rebelatto CK, Aguiar AM, Moreto MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913

    Article  CAS  Google Scholar 

  93. Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173

    Article  CAS  PubMed  Google Scholar 

  94. Kuethe F, Richartz BM, Kasper C, Sayer HG, Hoeffken K, Werner GS, Figulla HR (2005) Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 100:485–491

    Article  PubMed  Google Scholar 

  95. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  PubMed  Google Scholar 

  96. Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ (1989) Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 17:34–37

    CAS  PubMed  Google Scholar 

  97. Charbord P, Tavian M, Humeau L, Peault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87:4109–4119

    CAS  PubMed  Google Scholar 

  98. Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767

    Article  CAS  PubMed  Google Scholar 

  99. Machwate M, Zerath E, Holy X, Hott M, Modrowski D, Malouvier A, Marie PJ (1993) Skeletal unloading in rat decreases proliferation of rat bone and marrow-derived osteoblastic cells. Am J Physiol 26:E790–E799

    Google Scholar 

  100. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Scott Goebel W (2010) Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4(1):73–81

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh R. Bhonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kanafi, M.M., Ganneru, S., Marappagounder, D., Behera, P., Bhonde, R.R. (2014). Bone Marrow Versus Dental Pulp Stem Cells in Osteogenesis. In: Somasundaram, I. (eds) Stem Cell Therapy for Organ Failure. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2110-4_8

Download citation

Publish with us

Policies and ethics