Bone Marrow Versus Dental Pulp Stem Cells in Osteogenesis

  • Mohammad Mahboob Kanafi
  • Sireesha Ganneru
  • Dhanasekaran Marappagounder
  • Padmanav Behera
  • Ramesh R. Bhonde


Although the consideration of stem cells is currently approaching its hundredth year as one of the organizing principles of developmental biology, it demonstrates no sign of losing its youthful luster. A range of sources of stem cells have been identified that has the potential to self-renewal and capacity to form multiple lineages. Regardless of the discovery of existence of stem cells in various tissues and body fluids, bone marrow has been potentially considered as a persuasive and primeval source of stem cells for treating a wide horizon of disease [1, 2]. Although bone marrow-derived MSCs could be differentiated into mesodermal and non-mesodermal lineages [3–5], osteoblasts, responsible for osteogenesis, and hematopoietic cells, for hematopoiesis are closely associated with the bone marrow, suggesting a reciprocal relationship between the two [6]. Much of the work in MSCs found within the bone marrow stroma on its in vitro and in vivo applications involved in osteogenesis, adipogenesis, cartilage, and muscle formation including osteoblast, osteocytes, adipocytes, chondrocytes, myoblast, and myocytes are gaining importance due to its inherent bone formation capacity [7]. Hence, bone marrow resident stem cells made them the most primitive and promising source from ancient days for treating bone-related diseases. Nevertheless, it is unfortunate that these sources could have not been effective in treatment of all possible diseases due to various disadvantages of BM-MSCs; one of the main drawbacks is that osteogenic potential of bone marrow cells decreases with age [8], and hence, the search for alternate sources of adult stem cells is also underway. It has been demonstrated that stromal adipocytes in bone marrow cavity increases as age increases. In other words, adipocyte accumulation in the human bone marrow stroma correlates with trabecular bone loss with aging [9–12]. Thus, adipose stromal cells both isolated either from bone marrow or from adipose tissue itself has evolved as a contemporary source for bone regeneration [13, 14]. However, we predict that identifying a source that will be similar to the characteristics of bone marrow, possessing inherent bone-forming capacity might be more valuable in bone tissue engineering, repair, and regeneration.


Bone Defect Osteogenic Differentiation Bone Regeneration Bone Marrow Stem Cell Immunocompromised Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M (2009) Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 7:241–248PubMedGoogle Scholar
  2. 2.
    Miura Y, Gao Z, Miura M, Seo B-M, Sonoyama W, Chen W, Gronthos S, Zhang L, Shi S (2006) Mesenchymal stem cell-organized bone marrow elements: an alternative hematopoietic progenitor resource. Stem Cells 24:2428–2436PubMedCrossRefGoogle Scholar
  3. 3.
    Hattan N, Kawaguchi H, Ando K, Kuwabara E, Fujita J, Murata M, Suematsu M, Mori H, Fukuda K (2005) Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 65:334–344PubMedCrossRefGoogle Scholar
  4. 4.
    Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24:2319–2345PubMedCrossRefGoogle Scholar
  5. 5.
    Oh S-H, Muzzonigro TM, Bae S-H, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106PubMedCrossRefGoogle Scholar
  7. 7.
    Kopp H-G, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20:349–356PubMedCrossRefGoogle Scholar
  8. 8.
    Rebelatto CK, Aguiar AM, Moreto MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913CrossRefGoogle Scholar
  9. 9.
    Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop 80:147–154PubMedCrossRefGoogle Scholar
  10. 10.
    Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164PubMedCrossRefGoogle Scholar
  12. 12.
    Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Rodriguez AM, Elabd C, Amri E-Z, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128PubMedCrossRefGoogle Scholar
  14. 14.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kanafi MM, Pal R, Gupta PK (2013) Phenotypic and functional comparison of optimum culture conditions for upscaling of dental pulp stem cells. Cell Biol Int 37(2):126–136PubMedCrossRefGoogle Scholar
  16. 16.
    Kanafi M, Ramesh A, Gupta P, Bhonde R (2014) Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J 47(7):687–697PubMedCrossRefGoogle Scholar
  17. 17.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  18. 18.
    Kamran Kaveh, Rashid Ibrahim, Md. Zuki Abu Bakar, Tengku Azmi Ibrahim (2011) Mesenchymal stem cells, osteogenic lineage and bone tissue engineering: a review. J Anim Vet Adv 10:2317–2330Google Scholar
  19. 19.
    Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T (2002) Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 195:1549–1563PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osteointegration. Eur Spine J 10:S96–S101PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Patel DM, Shah J, Srivastava AS (2013). Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int:496218Google Scholar
  22. 22.
    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386PubMedCrossRefGoogle Scholar
  23. 23.
    Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2003) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5): 947–955CrossRefGoogle Scholar
  24. 24.
    Griffin M, Iqbal SA, Bayat A (2011) Exploring the application of mesenchymal stem cells in bone repair and regeneration. J Bone Joint Surg Br 93(4):427–434PubMedCrossRefGoogle Scholar
  25. 25.
    Stocum DL (2000) Stem cells in regenerative biology and medicine. Wound Repair Regen 9(6): 429–442CrossRefGoogle Scholar
  26. 26.
    Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155PubMedCrossRefGoogle Scholar
  27. 27.
    Li M, Ikehara S (2013) Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int:132642Google Scholar
  28. 28.
    Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239PubMedCrossRefGoogle Scholar
  29. 29.
    Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WWK, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMedCrossRefGoogle Scholar
  30. 30.
    Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ (2002) Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J Bone Miner Res 17:668–677PubMedCrossRefGoogle Scholar
  31. 31.
    Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258PubMedCrossRefGoogle Scholar
  32. 32.
    Gundle R, Joyner CJ, Triffitt JT (1995) Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone 16:597–601PubMedCrossRefGoogle Scholar
  33. 33.
    Bruder SP, Kurth AA, Shea M et al (1998) Bone regeneration by implantation of purified culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162PubMedCrossRefGoogle Scholar
  34. 34.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRefGoogle Scholar
  35. 35.
    Warnke PH, Springer IN, Wiltfang J et al (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770PubMedCrossRefGoogle Scholar
  36. 36.
    Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116PubMedCrossRefGoogle Scholar
  37. 37.
    Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Young RG, Butler DL, Weber W et al (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413PubMedCrossRefGoogle Scholar
  39. 39.
    Awad HA, Boivin GP, Dressler MR et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431PubMedCrossRefGoogle Scholar
  40. 40.
    Lim JK, Hui J, Li L et al (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20:899–910PubMedCrossRefGoogle Scholar
  41. 41.
    Gronthos S, Zannettino ACW, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835PubMedCrossRefGoogle Scholar
  42. 42.
    Kuznetsov SA, Friedenstein AJ, Robey PG (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 97:561–570PubMedCrossRefGoogle Scholar
  43. 43.
    Bruder SP, Horowitz MC, Mosca JD, Haynesworth SE (1997) Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21:225–235PubMedCrossRefGoogle Scholar
  44. 44.
    Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA, Robey PG (1998) Repair of craniotomy defects using bone marrow stromal cells. Transplantation 66:1272–1278PubMedCrossRefGoogle Scholar
  45. 45.
    Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337PubMedCrossRefGoogle Scholar
  46. 46.
    Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963PubMedCrossRefGoogle Scholar
  47. 47.
    Mankani MH, Krebsbach PH, Satomura K, Kuznetsov SA, Hoyt R, Robey PG (2001) Pedicled bone flap formation using transplanted bone marrow stromal cells. Arch Surg 136:263–270PubMedCrossRefGoogle Scholar
  48. 48.
    Huang GT-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155PubMedCrossRefGoogle Scholar
  52. 52.
    Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166–171PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165PubMedCrossRefGoogle Scholar
  54. 54.
    Suchanek J, Soukup T, Visek B, Ivancakova R, Kucerova L, Mokry J (2009) Dental pulp stem cells and their characterization. Biomed Pap Med Fac Univ Palacký Olomouc Czech 153(1):31–35CrossRefGoogle Scholar
  55. 55.
    Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M (2006) Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials 27(20):3766–3781PubMedCrossRefGoogle Scholar
  56. 56.
    Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506PubMedCrossRefGoogle Scholar
  57. 57.
    Yu J, He H, Tang C, Zhang G, Li Y, Wang R et al (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 11:32PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S et al (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82(12):976–981PubMedCrossRefGoogle Scholar
  59. 59.
    Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S et al (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617–631PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D’Aquino R et al (2008) Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. J Craniofac Surg 19(3):616–625, discussion 626–627PubMedCrossRefGoogle Scholar
  61. 61.
    Liu H-C EL-L, Wang D-S, Su F, Wu X, Shi Z-P et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 17(19-20):2417–2433PubMedCrossRefGoogle Scholar
  62. 62.
    Mori G, Centonze M, Brunetti G, Ballini A, Oranger A, Mori C et al (2010) Osteogenic properties of human dental pulp stem cells. J Biol Regul Homeost Agents 24(2):167–175PubMedGoogle Scholar
  63. 63.
    Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8):1394–1402PubMedCrossRefGoogle Scholar
  64. 64.
    Huang GT-J (2011) Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed) 3:788–800CrossRefGoogle Scholar
  65. 65.
    Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R et al (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 22(3):699–706PubMedGoogle Scholar
  66. 66.
    Hazaimeh-NAL, Beattie J, Duggal M, Yang XB (2012). Angiogenic potential of human dental pulp stem cells for skeletal tissue engineering. J Bone Joint Surg:94-B (SUPP XXXVI 43)Google Scholar
  67. 67.
    Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells Dayt Ohio 26(3):638–645CrossRefGoogle Scholar
  68. 68.
    Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA (2006) The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 27(33):5658–5668PubMedCrossRefGoogle Scholar
  69. 69.
    Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J et al (2008) In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 34(4):421–426PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969PubMedCrossRefGoogle Scholar
  71. 71.
    Yang X, Walboomers XF, van den Beucken JJJP, Bian Z, Fan M, Jansen JA (2009) Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 15(2):367–375PubMedCrossRefGoogle Scholar
  72. 72.
    D’ Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83Google Scholar
  73. 73.
    Bünger CM, Tiefenbach B, Jahnke A, Gerlach C, Freier T, Schmitz KP et al (2005) Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids. Biomaterials 26(15):2353–2360PubMedCrossRefGoogle Scholar
  74. 74.
    Kasoju N, Bora U (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater Bristol Engl 7(4):045004CrossRefGoogle Scholar
  75. 75.
    Munoz-Pinto DJ, Jimenez-Vergara AC, Hou Y, Hayenga HN, Rivas A, Grunlan M et al (2012) Osteogenic potential of poly (ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels. Tissue Eng Part A 18(15–16):1710–1719PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMedCrossRefGoogle Scholar
  77. 77.
    Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW et al (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23(12): 3041–3051PubMedCrossRefGoogle Scholar
  78. 78.
    Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S et al (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1(1):5PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116PubMedCrossRefGoogle Scholar
  80. 80.
    Laino G, Graziano A, d‘ Aquino R, Pirozzi G, Lanza V, Valiante S et al (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206(3):693–701PubMedCrossRefGoogle Scholar
  81. 81.
    Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K et al (2008) SHED repair critical-size calvarial defects in mice. Oral Dis 14(5):428–434PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    De Mendonça CA, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD et al (2008) Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 19(1):204–210Google Scholar
  83. 83.
    Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, Shi S et al (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 88(3): 249–254PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Liu H-C, L-L E, Wang D-S, Su F, Wu X, Shi Z-P et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly (L-lactide). Tissue Eng Part A 17(19–20):2417–2433PubMedCrossRefGoogle Scholar
  85. 85.
    Aquino D’, Riccardo ADR, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83PubMedGoogle Scholar
  86. 86.
    Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M et al (2006) Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng 12(4):821–830PubMedCrossRefGoogle Scholar
  87. 87.
    Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68(4):773–782PubMedCrossRefGoogle Scholar
  88. 88.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science (New York, NY) 324(5935):1673–1677CrossRefGoogle Scholar
  90. 90.
    Penolazzi L, Tavanti E, Vecchiatini R, Lambertini E, Vesce F, Gambari R et al (2010) Encapsulation of mesenchymal stem cells from Wharton’s jelly in alginate microbeads. Tissue Eng Part C Methods 16(1):141–155PubMedCrossRefGoogle Scholar
  91. 91.
    Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481PubMedCrossRefGoogle Scholar
  92. 92.
    Rebelatto CK, Aguiar AM, Moreto MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913CrossRefGoogle Scholar
  93. 93.
    Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173PubMedCrossRefGoogle Scholar
  94. 94.
    Kuethe F, Richartz BM, Kasper C, Sayer HG, Hoeffken K, Werner GS, Figulla HR (2005) Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 100:485–491PubMedCrossRefGoogle Scholar
  95. 95.
    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416PubMedCrossRefGoogle Scholar
  96. 96.
    Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ (1989) Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 17:34–37PubMedGoogle Scholar
  97. 97.
    Charbord P, Tavian M, Humeau L, Peault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87:4109–4119PubMedGoogle Scholar
  98. 98.
    Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767PubMedCrossRefGoogle Scholar
  99. 99.
    Machwate M, Zerath E, Holy X, Hott M, Modrowski D, Malouvier A, Marie PJ (1993) Skeletal unloading in rat decreases proliferation of rat bone and marrow-derived osteoblastic cells. Am J Physiol 26:E790–E799Google Scholar
  100. 100.
    Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Scott Goebel W (2010) Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4(1):73–81PubMedCentralPubMedGoogle Scholar
  101. 101.
    Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Mohammad Mahboob Kanafi
    • 1
  • Sireesha Ganneru
    • 2
  • Dhanasekaran Marappagounder
    • 3
  • Padmanav Behera
    • 2
  • Ramesh R. Bhonde
    • 1
  1. 1.School of Regenerative MedicineManipal Institute of Regenerative Medicine, Manipal UniversityBangaloreIndia
  2. 2.Department of Stem Cell ResearchNational Institute of Nutrition (ICMR)Secunderabad, HyderabadIndia
  3. 3.Stem Cell Banking & ResearchRee Laboratories Private LimitedMumbaiIndia

Personalised recommendations