Endothelial Progenitor Cells: Application in Vascular Medicine

  • Venkata Naga Srikanth Garikipati
  • Prasanna Krishnamurthy
  • Suresh Kumar Verma
  • Raj Kishore


For more than a decade now, biology and therapeutic efficacy of endothelial progenitor cells (EPCs) were largely driven by the first observations of Ashara et al. in identifying EPCs in adult peripheral blood (PB) and were shown to derive from bone marrow (BM) further migrating and incorporating into foci of physiological or pathological neovascularization. As a matter of fact, postnatal neovascularization was believed to be established by the mechanism of “angiogenesis,” by in situ proliferation and migration of preexisting endothelial cells (ECs). However, the finding that EPCs can home to sites of neovascularization and differentiate into ECs in situ is consistent with “vasculogenesis”; a critical paradigm has been demonstrated in embryonic neovascularization and also shown recently for the adult organism in which a pool of progenitor cells contributes to postnatal neovascular formation. The discovery of EPCs has therefore considerably changed our understanding of adult blood vessel formation. Furthermore, we and other groups envisage the potential of EPC to improve the clinical applicability in the fight against cardiovascular diseases.


Endothelial Progenitor Cell Corneal Neovascularization Hind Limb Ischemia Adult Peripheral Blood Pathological Neovascularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967. PubMed PMID: 9020076PubMedCrossRefGoogle Scholar
  2. 2.
    Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367. PubMed PMID: 9657732PubMedGoogle Scholar
  3. 3.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228. PubMed PMID: 10436164PubMedCrossRefGoogle Scholar
  4. 4.
    Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934. PubMed PMID: 1375931PubMedGoogle Scholar
  5. 5.
    Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478. PubMed PMID: 2460305PubMedGoogle Scholar
  6. 6.
    Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9):1231–1236. PubMed PMID: 10225965. Pubmed Central PMCID: 408362PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB et al (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103(1):13–19. PubMed PMID: 12958072PubMedCrossRefGoogle Scholar
  8. 8.
    Pelosi E, Valtieri M, Coppola S, Botta R, Gabbianelli M, Lulli V et al (2002) Identification of the hemangioblast in postnatal life. Blood 100(9):3203–3208. PubMed PMID: 12384418PubMedCrossRefGoogle Scholar
  9. 9.
    Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN et al (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8(6):607–612. PubMed PMID: 12042812PubMedCrossRefGoogle Scholar
  10. 10.
    Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106(5):1525–1531. PubMed PMID: 15905185PubMedCrossRefGoogle Scholar
  11. 11.
    Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107(16):2134–2139. PubMed PMID: 12695305PubMedCrossRefGoogle Scholar
  12. 12.
    Thal MA, Krishnamurthy P, Mackie AR, Hoxha E, Lambers E, Verma S et al (2012) Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair. Circ Res 111(2):180–190. PubMed PMID: 22589372. Pubmed Central PMCID: 3406600PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Krishnamurthy P, Thal M, Verma S, Hoxha E, Lambers E, Ramirez V et al (2011) Interleukin-10 deficiency impairs bone marrow-derived endothelial progenitor cell survival and function in ischemic myocardium. Circ Res 109(11):1280–1289. PubMed PMID: 21959218. Pubmed Central PMCID: 3235675PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13(1):87–102. PubMed PMID: 19067770PubMedCrossRefGoogle Scholar
  15. 15.
    Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML et al (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27(7):1572–1579. PubMed PMID: 17495235PubMedCrossRefGoogle Scholar
  16. 16.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77. PubMed PMID: 10619863. Pubmed Central PMCID: 382587PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760. PubMed PMID: 15226175PubMedCrossRefGoogle Scholar
  18. 18.
    Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24(2):288–293. PubMed PMID: 14699017PubMedCrossRefGoogle Scholar
  19. 19.
    Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51(6):660–668. PubMed PMID: 18261686PubMedCrossRefGoogle Scholar
  20. 20.
    Aicher A, Rentsch M, Sasaki K, Ellwart JW, Fandrich F, Siebert R et al (2007) Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 100(4):581–589. PubMed PMID: 17272807PubMedCrossRefGoogle Scholar
  21. 21.
    Wojakowski W, Kucia M, Kazmierski M, Ratajczak MZ, Tendera M (2008) Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? Heart 94(1):27–33. PubMed PMID: 17395668PubMedCrossRefGoogle Scholar
  22. 22.
    Losordo DW, Kishore R (2009) A big promise from the very small identification of circulating embryonic stem-like pluripotent cells in patients with acute myocardial infarction. J Am Coll Cardiol 53(1):10–12. PubMed PMID: 19118717. Pubmed Central PMCID: 2664705PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Masuda H, Kalka C, Takahashi T, Yoshida M, Wada M, Kobori M et al (2007) Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 101(6):598–606. PubMed PMID: 17656679PubMedCrossRefGoogle Scholar
  24. 24.
    Bauer SM, Goldstein LJ, Bauer RJ, Chen H, Putt M, Velazquez OC (2006) The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia. J Vasc Surg 43(1):134–141. PubMed PMID: 16414400PubMedCrossRefGoogle Scholar
  25. 25.
    Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM et al (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30(8):967–972. PubMed PMID: 12160849PubMedCrossRefGoogle Scholar
  26. 26.
    Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM et al (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39(5):733–742. PubMed PMID: 16199052PubMedCrossRefGoogle Scholar
  27. 27.
    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5):634–637. PubMed PMID: 11156872PubMedCrossRefGoogle Scholar
  28. 28.
    Jujo K, Ii M, Losordo DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 45(4):530–544. PubMed PMID: 18755197. Pubmed Central PMCID: 2628572PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Miyamoto Y, Suyama T, Yashita T, Akimaru H, Kurata H (2007) Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells. J Mol Cell Cardiol 43(5):627–635. PubMed PMID: 17900610PubMedCrossRefGoogle Scholar
  30. 30.
    Kawamoto A, Asahara T, Losordo DW (2002) Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Rad Med 3(3–4):221–225. PubMed PMID: 12974378CrossRefGoogle Scholar
  31. 31.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436. PubMed PMID: 11283669PubMedCrossRefGoogle Scholar
  32. 32.
    Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97(7):3422–3427. PubMed PMID: 10725398. Pubmed Central PMCID: 16255PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H et al (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105(11):1527–1536. PubMed PMID: 10841511. Pubmed Central PMCID: 300847PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M et al (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114(20):2163–2169. PubMed PMID: 17075009PubMedCrossRefGoogle Scholar
  35. 35.
    Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106(4):571–578. PubMed PMID: 10953032. Pubmed Central PMCID: 380249PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Dai Y, Ashraf M, Zuo S, Uemura R, Dai YS, Wang Y et al (2008) Mobilized bone marrow progenitor cells serve as donors of cytoprotective genes for cardiac repair. J Mol Cell Cardiol 44(3):607–617. PubMed PMID: 18221754. Pubmed Central PMCID: 2685071PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M et al (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115(25):3165–3172. PubMed PMID: 17562958PubMedCrossRefGoogle Scholar
  38. 38.
    Hung HS, Shyu WC, Tsai CH, Hsu SH, Lin SZ (2009) Transplantation of endothelial progenitor cells as therapeutics for cardiovascular diseases. Cell Transplant 18(9):1003–1012. PubMed PMID: 19650968PubMedCrossRefGoogle Scholar
  39. 39.
    Iwasaki H, Kawamoto A, Ishikawa M, Oyamada A, Nakamori S, Nishimura H et al (2006) Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113(10):1311–1325. PubMed PMID: 16534028PubMedCrossRefGoogle Scholar
  40. 40.
    Kuroda R, Matsumoto T, Niikura T, Kawakami Y, Fukui T, Lee SY et al (2014) Local transplantation of granulocyte colony stimulating factor-mobilized CD34+ cells for patients with femoral and tibial nonunion: pilot clinical trial. Stem Cells Transl Med 3(1):128–134. PubMed PMID: 24307697. Pubmed Central PMCID: 3902290PubMedCrossRefGoogle Scholar
  41. 41.
    Fujita Y, Kinoshita M, Furukawa Y, Nagano T, Hashimoto H, Hirami Y et al (2014) Phase II clinical trial of CD34+ cell therapy to explore endpoint selection and timing in patients with critical limb ischemia. Circ J 78(2):490–501. PubMed PMID: 24257136PubMedCrossRefGoogle Scholar
  42. 42.
    Kuroda R, Matsumoto T, Miwa M, Kawamoto A, Mifune Y, Fukui T et al (2011) Local transplantation of G-CSF-mobilized CD34(+) cells in a patient with tibial nonunion: a case report. Cell Transplant 20(9):1491–1496. PubMed PMID: 21176407PubMedCrossRefGoogle Scholar
  43. 43.
    Burt RK, Testori A, Oyama Y, Rodriguez HE, Yaung K, Villa M et al (2010) Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant 45(1):111–116. PubMed PMID: 19448678PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699. PubMed PMID: 15489105PubMedCrossRefGoogle Scholar
  45. 45.
    Li ZQ, Zhang M, Jing YZ, Zhang WW, Liu Y, Cui LJ et al (2007) The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol 115(1):52–56. PubMed PMID: 16822566PubMedCrossRefGoogle Scholar
  46. 46.
    Boyle AJ, Whitbourn R, Schlicht S, Krum H, Kocher A, Nandurkar H et al (2006) Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol 109(1):21–27. PubMed PMID: 15970342PubMedCrossRefGoogle Scholar
  47. 47.
    Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P et al (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112(9 Suppl):I178–I183. PubMed PMID: 16159812PubMedGoogle Scholar
  48. 48.
    Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46. PubMed PMID: 12517467PubMedCrossRefGoogle Scholar
  49. 49.
    Heiss C, Kleinbongard P, Dejam A, Perre S, Schroeter H, Sies H et al (2005) Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 46(7):1276–1283. PubMed PMID: 16198843PubMedCrossRefGoogle Scholar
  50. 50.
    Ii M, Takenaka H, Asai J, Ibusuki K, Mizukami Y, Maruyama K et al (2006) Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ Res 98(5):697–704. PubMed PMID: 16484619PubMedCrossRefGoogle Scholar
  51. 51.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7. PubMed PMID: 11440984PubMedCrossRefGoogle Scholar
  52. 52.
    Imanishi T, Moriwaki C, Hano T, Nishio I (2005) Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 23(10):1831–1837. PubMed PMID: 16148606PubMedCrossRefGoogle Scholar
  53. 53.
    Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al (2004) Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 24(8):1442–1447. PubMed PMID: 15191940PubMedCrossRefGoogle Scholar
  54. 54.
    Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A (2006) Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 187(2):423–432. PubMed PMID: 16288934PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Venkata Naga Srikanth Garikipati
    • 1
  • Prasanna Krishnamurthy
    • 2
  • Suresh Kumar Verma
    • 3
  • Raj Kishore
    • 4
  1. 1.Center for Translational MedicineTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonUSA
  3. 3.Center for Translational MedicineTemple University School of MedicinePhiladelphiaUSA
  4. 4.Center for Translational MedicineTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations