Advertisement

Stem Cell Therapy for Cardiac Tissue Regeneration Post-myocardial Infarction

  • Uksha Saini
  • Konstantinos Dean Boudoulas
Chapter

Abstract

Myocardial infarction typically is the result of atherosclerotic plaque rupture in a coronary artery followed by platelet aggregation and thrombus formation resulting in partial or total vessel occlusion with diminished blood flow to the myocardial tissue downstream [1]. Within minutes to hours, cardiomyocytes in the ischemic region undergo apoptosis resulting in cell death [2, 3]; this results in damaged myocardium, left ventricular dysfunction, and heart failure [4, 5]. Myocardial infarction results in substantial mortality and morbidity worldwide [6]. Currently, there are limited therapies to consistently and effectively reverse the course of this process, and the possibility to replace or restore damaged heart tissue using cell therapy is an exciting concept. Stem cells are undifferentiated and unspecialized cells found in the body that have the potential to develop into all cell types [1]. The present chapter focuses on defining various stem cells and their use for cardiac tissue regeneration post-myocardial infarction. In addition, the major challenges and drawbacks associated with their use will be discussed.

Keywords

Stem Cell Left Ventricular Ejection Fraction Hepatocyte Growth Factor Human ESCs Injured Myocardium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boudoulas KD, Hatzopoulos AK (2009) Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis Model Mech 2:344–358PubMedCentralPubMedGoogle Scholar
  2. 2.
    Takemura G, Fujiwara H (2004) Role of apoptosis in remodeling after myocardial infarction. Pharmacol Ther 104:1–16PubMedGoogle Scholar
  3. 3.
    Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease-a novel therapeutic target? FASEB J 16:135–146PubMedGoogle Scholar
  4. 4.
    Narula J, Pandey P, Arbustini E et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci 96:8144–8149PubMedCentralPubMedGoogle Scholar
  5. 5.
    Sabbah HN, Sharov VG, Goldstein S (2000) Cell death, tissue hypoxia and the progression of heart failure. Heart Fail Rev 5:131–138PubMedGoogle Scholar
  6. 6.
    Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127:749–756PubMedCentralPubMedGoogle Scholar
  7. 7.
    Singla DK, Hacker TA, Ma L et al (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195–200PubMedGoogle Scholar
  8. 8.
    Christoforou N, Oskouei BN, Esteso P et al (2010) Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One 5:e11536PubMedCentralPubMedGoogle Scholar
  9. 9.
    Liu Y, Ye X, Mao L et al (2013) Transplantation of parthenogenetic embryonic stem cells ameliorates cardiac dysfunction and remodeling after myocardial infarction. Cardiovasc Res 97:208–218PubMedGoogle Scholar
  10. 10.
    Burt RK, Chen YH, Verda L et al (2012) Mitotically inactivated embryonic stem cells can be used as an in vivo feeder layer to nurse damaged myocardium after acute myocardial infarction: a preclinical study. Circ Res 111:1286–1296PubMedGoogle Scholar
  11. 11.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  12. 12.
    Stadtfeld M, Maherali N, Breault DT et al (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240PubMedCentralPubMedGoogle Scholar
  13. 13.
    Xiong Q, Ye L, Zhang P et al (2013) Functional consequences of human induced pluripotent stem cells therapy: myocardial ATP turnover rate in the in vivo swine hearts with post-infarction remodeling. Circulation 127(9):997–1008PubMedCentralPubMedGoogle Scholar
  14. 14.
    Gu M, Nguyen PK, Lee AS et al (2012) Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 111:882–893PubMedCentralPubMedGoogle Scholar
  15. 15.
    Deng J, Han Y, Yan C et al (2010) Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis 15:463–473PubMedGoogle Scholar
  16. 16.
    Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684PubMedGoogle Scholar
  17. 17.
    Gore A, Li Z, Fung HL, Young JE et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67PubMedCentralPubMedGoogle Scholar
  18. 18.
    Hussein SM, Batada NN, Vuoristo S et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62PubMedGoogle Scholar
  19. 19.
    Zhao T, Zhang Z-N, Rong Z et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215PubMedGoogle Scholar
  20. 20.
    Deten A, Volz HC, Clamors S et al (2004) Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc Res 65:52–63Google Scholar
  21. 21.
    Muller-Sieburg CE, Cho RH, Thoman M et al (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:1302–1309PubMedGoogle Scholar
  22. 22.
    Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402PubMedCentralPubMedGoogle Scholar
  23. 23.
    Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942PubMedGoogle Scholar
  24. 24.
    Young PP, Vaughan DE, Hatzopoulos AK (2007) Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis 49:421–429PubMedCentralPubMedGoogle Scholar
  25. 25.
    Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189PubMedGoogle Scholar
  26. 26.
    Dzau VJ, Gnecchi M, Pachori AS (2005) Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol 46:1351–1353PubMedGoogle Scholar
  27. 27.
    Shantsila E, Watson T, Lip GY (2007) Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49:741–752PubMedGoogle Scholar
  28. 28.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedGoogle Scholar
  29. 29.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317PubMedGoogle Scholar
  30. 30.
    Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19PubMedCentralPubMedGoogle Scholar
  31. 31.
    Grauss RW, Winter EM, van Tuyn J et al (2007) Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol Heart Circ Physiol 293:H2438–H2447PubMedGoogle Scholar
  32. 32.
    Otto Beitnes J, Oie E, Shahdadfar A et al (2012) Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplant 21:1697–1709PubMedGoogle Scholar
  33. 33.
    Grinnemo KH, Månsson-Broberg A, Leblanc K et al (2006) Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med 38:144–153PubMedGoogle Scholar
  34. 34.
    Hosoda T (2012) C-kit-positive cardiac stem cells and myocardial regeneration. Am J Cardiovasc Dis 2:58–67PubMedCentralPubMedGoogle Scholar
  35. 35.
    Barile L, Messina E, Giacomello A et al (2007) Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med 4:S9–S14PubMedGoogle Scholar
  36. 36.
    Boyle AJ, Schulman SP, Hare JM (2006) Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair. Circulation 114:339–352PubMedGoogle Scholar
  37. 37.
    Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedGoogle Scholar
  38. 38.
    Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci 100:12313–12318PubMedCentralPubMedGoogle Scholar
  39. 39.
    Hamdi H, Furuta A, Bellamy V et al (2009) Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg 87(4):1196–1203PubMedGoogle Scholar
  40. 40.
    Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedGoogle Scholar
  41. 41.
    Kang SK, Shin IS, Ko MS et al (2012) Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012:342968PubMedCentralPubMedGoogle Scholar
  42. 42.
    Perin EC, López J (2006) Methods of stem cell delivery in cardiac diseases. Nat Rev Cardiol 3:S110–S113Google Scholar
  43. 43.
    Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedGoogle Scholar
  44. 44.
    Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583PubMedCentralPubMedGoogle Scholar
  45. 45.
    Penn MS, Mangi AA (2008) Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res 102:1471–1482PubMedCentralPubMedGoogle Scholar
  46. 46.
    Li W, Ma N, Ong LL et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2:18–27Google Scholar
  47. 47.
    Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201PubMedGoogle Scholar
  48. 48.
    Hodgkinson CP, Gomez JA, Mirotsou M et al (2010) Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther 21:1513–1526PubMedCentralPubMedGoogle Scholar
  49. 49.
    Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104PubMedGoogle Scholar
  50. 50.
    Tsujimoto Y, Yunis J, Onorato-Showe L et al (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406PubMedGoogle Scholar
  51. 51.
    Filip S, Mokry J, Horacek J et al (2008) Stem cells and the phenomena of plasticity and diversity: a limiting property of carcinogenesis. Stem Cells Dev 17:1031–1038PubMedGoogle Scholar
  52. 52.
    Smart N, Riley PR (2008) The stem cell movement. Circ Res 102:1155–1168PubMedGoogle Scholar
  53. 53.
    Chen J, Chemaly E, Liang L et al (2010) Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. Am J Pathol 176:1705–1715PubMedCentralPubMedGoogle Scholar
  54. 54.
    Rombouts WJC, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170PubMedGoogle Scholar
  55. 55.
    Tang YL, Tang Y, Zhang YC et al (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350PubMedGoogle Scholar
  56. 56.
    Pasha Z, Wang Y, Sheikh R et al (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142PubMedGoogle Scholar
  57. 57.
    Saini U, Gumina RJ, Wolfe B et al (2013) Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. J Cell Biochem 114:2612PubMedCentralPubMedGoogle Scholar
  58. 58.
    Khan M, Meduru S, Gogna R et al (2012) Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function. Cardiovasc Res 93:89–99PubMedCentralPubMedGoogle Scholar
  59. 59.
    Ng Y-S, D’Amore PA (2001) Therapeutic angiogenesis for cardiovascular disease. Curr Control Trials Cardiovasc Med 2:278–285PubMedCentralPubMedGoogle Scholar
  60. 60.
    Wang X, Hu Q, Mansoor A et al (2006) Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts. Am J Physiol Heart Circ Physiol 290:H1393–H1405PubMedGoogle Scholar
  61. 61.
    Christman KL, Vardanian AJ, Fang Q et al (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654–660PubMedGoogle Scholar
  62. 62.
    Lu WN, Lü SH, Wang HB et al (2009) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 15:1437–1447PubMedGoogle Scholar
  63. 63.
    Scudellari M (2009) The delivery dilemma. Nat Rep Stem Cells. doi: 10.1038/stemcells.2009.104
  64. 64.
    Kang WJ, Kang HJ, Kim HS et al (2006) Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 47:1295–1301PubMedGoogle Scholar
  65. 65.
    Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202PubMedGoogle Scholar
  66. 66.
    Aicher A, Zeiher AM, Dimmeler S (2005) Mobilizing endothelial progenitor cells. Hypertension 45:321–325PubMedGoogle Scholar
  67. 67.
    Teng CJ, Luo J, Chiu RC et al (2006) Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 132:628–632PubMedGoogle Scholar
  68. 68.
    Suzuki K, Murtuza B, Beauchamp JR et al (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 10:1153–1155Google Scholar
  69. 69.
    Kim K, Lerou P, Yabuuchi A et al (2007) Histocompatible embryonic stem cells by arthenogenesis. Science 315:482–486PubMedGoogle Scholar
  70. 70.
    Swijnenburg RJ, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci 105:12991–12996PubMedCentralPubMedGoogle Scholar
  71. 71.
    Zhao Y, Li T, Wei X et al (2012) Mesenchymal stem cell transplantation improves regional cardiac remodeling following ovine infarction. Stem Cells Transl Med 1:685–695PubMedCentralPubMedGoogle Scholar
  72. 72.
    Blum B, Bar-Nur O, Golan-Lev T et al (2009) The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol 27:281–287PubMedGoogle Scholar
  73. 73.
    Martins-Taylor K, Xu R-H (2012) Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells 30:22–27PubMedGoogle Scholar
  74. 74.
    Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomized phase 1 trial. Lancet 379:895–904PubMedGoogle Scholar
  75. 75.
    Hirsch A, Nijveldt R, van der Vleuten PA et al (2011) Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J 32:1736–1747PubMedGoogle Scholar
  76. 76.
    Traverse JH, Henry TD, Ellis SG et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function the late TIME randomized trial. JAMA 306:2110–2119PubMedCentralPubMedGoogle Scholar
  77. 77.
    Bolli R, Chueh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomized phase 1 trial. Lancet 378:1847–1857PubMedCentralPubMedGoogle Scholar
  78. 78.
    Menasché P, Alfieri O, Janssens S et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200PubMedGoogle Scholar
  79. 79.
    Meluzin J, Mayer J, Groch J et al (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 152:e9–e15PubMedGoogle Scholar
  80. 80.
    Meyer GP, Wollert KC, Lotz J et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294PubMedGoogle Scholar
  81. 81.
    Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232PubMedGoogle Scholar
  82. 82.
    Schächinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow–derived progenitor cells in acute myocardial in acute myocardial infarction. N Engl J Med 355:1210–1221PubMedGoogle Scholar
  83. 83.
    Ge J, Li Y, Qian J et al (2006) Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 92:1764–1767PubMedCentralPubMedGoogle Scholar
  84. 84.
    Hendrikx M, Hensen K, Clijsters C et al (2006) Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 114(suppl):I101–I107PubMedGoogle Scholar
  85. 85.
    Janssens S, Dubois C, Bogaert J et al (2006) Autologous bone marrow–derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomized controlled trial. Lancet 367:113–121PubMedGoogle Scholar
  86. 86.
    Lunde K, Solheim S, Aakhus S et al (2006) Intracoronary injections of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209PubMedGoogle Scholar
  87. 87.
    Chen S, Liu S, Tian SN et al (2006) Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 18:552–556PubMedGoogle Scholar
  88. 88.
    Kang H, Lee H, Na S et al (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation 114(suppl):I145–I151PubMedGoogle Scholar
  89. 89.
    Ruan W, Pan C, Huang G, Li Y et al (2005) Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J (Engl) 118:1175–1181Google Scholar
  90. 90.
    Erbs S, Linke A, Adams V et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762PubMedGoogle Scholar
  91. 91.
    Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95PubMedGoogle Scholar
  92. 92.
    Choi JH, Choi J, Lee WS et al (2007) Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ J 71:486–494PubMedGoogle Scholar
  93. 93.
    Gavira JJ, Herreros J, Perez A et al (2006) Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 131:799–804PubMedGoogle Scholar
  94. 94.
    Ince H, Petzsch M, Rehders TC et al (2004) Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 11:695–704PubMedGoogle Scholar
  95. 95.
    Katritsis DG, Sotiropoulou PA, Karvouni E et al (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65:321–329PubMedGoogle Scholar
  96. 96.
    Mocini D, Staibano M, Mele L et al (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 151:192–197PubMedGoogle Scholar
  97. 97.
    Strauer BE, Brehm M, Zeus T, Köstering M et al (2002) Repair of infracted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918PubMedGoogle Scholar
  98. 98.
    Strauer BE, Brehm M, Zeus T et al (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 46:1651–1658PubMedGoogle Scholar
  99. 99.
    Tatsumi T, Ashihara E, Yasui T et al (2007) Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ J 71:1199–1207PubMedGoogle Scholar
  100. 100.
    Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997PubMedGoogle Scholar
  101. 101.
    Meluzín J, Janousek S, Mayer J et al (2008) Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 128:185–192PubMedGoogle Scholar
  102. 102.
    Losordo DW, Henry TD, Davidson C et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109:428–436PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA
  2. 2.Department of Medicine, Department of Cardiovascular MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations