Stem Cell Therapy for Neurological Disorders: From Bench to Bedside

  • Peter A. Barbuti


According to the National Institute of Neurological Disorders and Stroke (NIH), there are found to be 488 neurological disorders present in the world at the time of writing, ranging from acid lipase disease to Zellweger syndrome [1]. No book chapter is equipped to tackle all of these in detail; however, it will focus upon the five major neurological diseases: Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis. The chapter will begin by summarising the epidemiology, pathology and disease susceptibilities for each of these five major neurological diseases. The chapter will then look in detail at generating patient-specific cell lines for personalised medicine, genome editing and the differentiation protocols necessary for cell replacement therapy related to the aforementioned neurodegenerative diseases. This chapter will then look at the alternative cell sources that have been used as existing and current cell therapeutic strategies before summarising with the advantages and constraints of stem cells in research and clinical translation. Finally, the chapter will conclude on the current research findings with a particular focus on patient-derived research in Parkinson’s disease and how different therapeutic strategies can be targeted at different neurological diseases focusing on – Parkinson’s disease and multiple sclerosis – before summarising on the challenges for stem cell therapy in neurological disorders: from bench to the bedside.


Amyloid Lateral Sclerosis Stem Cell Therapy Genome Editing Zinc Finger Nuclease Cell Replacement Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3, 77 sr71. doi: 10.1126/scitranslmed.3002369
  3. 3.
    Wimo A, Prince M (2010) World Alzheimer report 2010: the global economic impact of Dementia. Alzheimer’s Dis Int 1–56Google Scholar
  4. 4.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. doi: 10.1007/bf00308809 PubMedGoogle Scholar
  5. 5.
    Sherrington R et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760Google Scholar
  6. 6.
    Levy-Lahad E et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977PubMedGoogle Scholar
  7. 7.
    Goate A et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706PubMedGoogle Scholar
  8. 8.
    Scheuner D et al (1996) Secreted amyloid [beta]-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870PubMedGoogle Scholar
  9. 9.
    Kumar-Singh S et al (2006) Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Aβ42 and decreased Aβ40. Hum Mutat 27(7):686–695PubMedGoogle Scholar
  10. 10.
    Bentahir M et al (2006) Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J Neurochem 96(3):732–742PubMedGoogle Scholar
  11. 11.
    De Strooper B et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390PubMedGoogle Scholar
  12. 12.
    Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247:II3–II10PubMedGoogle Scholar
  13. 13.
    Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A (2013) The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 28:311–318. doi: 10.1002/mds.25292 PubMedGoogle Scholar
  14. 14.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301. doi: 10.1093/brain/114.5.2283 PubMedGoogle Scholar
  15. 15.
    Campion D et al (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65(3):664–670Google Scholar
  16. 16.
    Genin E et al (2011) APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 16(9):903–907Google Scholar
  17. 17.
    Farrer LA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein e genotype and Alzheimer disease: a meta-analysis. JAMA 278(16):1349–1356PubMedGoogle Scholar
  18. 18.
    Mounsey RB, Teismann P (2010) Mitochondrial dysfunction in Parkinson’s disease: pathogenesis and neuroprotection. Parkinson’s Dis 2011(Article ID 617472): 18 pagesGoogle Scholar
  19. 19.
    Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1)Google Scholar
  20. 20.
    Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of [alpha]-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62:1241–1253PubMedGoogle Scholar
  21. 21.
    Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology 27:494–506PubMedGoogle Scholar
  22. 22.
    Maries E et al (2003) The role of [alpha]-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 4(9):727–738PubMedGoogle Scholar
  23. 23.
    Singleton AB et al (2003) {alpha}-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841Google Scholar
  24. 24.
    Ibáñez P et al (2004) Causal relation between A-synuclein locus duplication as a cause of familial Parkinson’s disease. The Lancet 364(9440):1169–1171Google Scholar
  25. 25.
    Miyake Y et al (2012) SNCA polymorphisms, smoking, and sporadic Parkinson’s disease in Japanese. Parkinsonism Relat Disord 18(5):557–561Google Scholar
  26. 26.
    Pan F et al (2012) SNP rs356219 of the α-synuclein (SNCA) gene is associated with Parkinson’s disease in a Chinese Han population. Parkinsonism Relat Disord 18(5):632–634Google Scholar
  27. 27.
    Westerlund M, Hoffer B, Olson L (2010) Parkinson’s disease: exit toxins, enter genetics. Prog Neurobiol 90(2):146–156PubMedCentralPubMedGoogle Scholar
  28. 28.
    MacDonald ME et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983. doi:
  29. 29.
    Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265–276. doi:
  30. 30.
    Reiner A et al (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci 85:5733–5737PubMedCentralPubMedGoogle Scholar
  31. 31.
    Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10(11):1355–1360PubMedCentralPubMedGoogle Scholar
  32. 32.
    Langbehn DR et al (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277.doi: 10.1111/j.1399-0004.2004.00241.x PubMedGoogle Scholar
  33. 33.
    Rosenblatt A et al (2006) The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66:1016–1020PubMedGoogle Scholar
  34. 34.
    Walker FO (2007) Huntington’s disease. Lancet 369:218–228. doi:
  35. 35.
    Rice CM, Kemp K, Wilkins A, Scolding NJ (2013) Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet 382:1204–1213. doi:
  36. 36.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517. doi:
  37. 37.
    Olsson T et al (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 86:981–985. doi: 10.1172/jci114800 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Disanto G et al (2013) Epstein–Barr virus, latitude and multiple sclerosis. Mult Scler J 19:362–365. doi: 10.1177/1352458512451942 Google Scholar
  39. 39.
    Simpson S, Blizzard L, Otahal P, Van der Mei I, Taylor B (2011) Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 82:1132–1141. doi: 10.1136/jnnp.2011.240432 PubMedGoogle Scholar
  40. 40.
    Orton S-M et al (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 5:932–936. doi:
  41. 41.
    Stüve O, Oksenberg J (2010) In: Pagon RA, Adam MP, Bird TD (eds) GeneReviewsGoogle Scholar
  42. 42.
    Barcellos LF et al (2006) Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 15:2813–2824. doi: 10.1093/hmg/ddl223 PubMedGoogle Scholar
  43. 43.
    Alcina A et al (2012) Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One 7:e29819. doi: 10.1371/journal.pone.0029819 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Pesiridis GS, Lee VM-Y, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18:R156–R162. doi: 10.1093/hmg/ddp303 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955. doi:
  46. 46.
    Orenstein SJ et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406Google Scholar
  47. 47.
    Friedman LG et al (2012) Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J Neurosci 32(22):7585–7593PubMedCentralPubMedGoogle Scholar
  48. 48.
    Badiola N et al (2011) Tau enhances A-synuclein aggregation and toxicity in cellular models of synucleinopathy. PLoS One 6(10):e26609PubMedCentralPubMedGoogle Scholar
  49. 49.
    Clinton LK et al (2010) Synergistic interactions between ABeta, Tau, and A-Synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30(21):7281–7289PubMedCentralPubMedGoogle Scholar
  50. 50.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  51. 51.
    Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMedGoogle Scholar
  52. 52.
    Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedGoogle Scholar
  53. 53.
    Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 PubMedGoogle Scholar
  54. 54.
    Niknejad H, Deihim T, Ahmadiani A, Jorjani M, Peirovi H (2012) Permanent expression of midbrain dopaminergic neurons traits in differentiated amniotic epithelial cells. Neurosci Lett 506(1):22–27Google Scholar
  55. 55.
    Yan X et al (2009) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19:469–480Google Scholar
  56. 56.
    Narsinh KH et al (2010) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88PubMedCentralPubMedGoogle Scholar
  57. 57.
    Ye Z et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480. doi: 10.1182/blood-2009-04-217406 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Yuin-Han L et al (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479Google Scholar
  59. 59.
    Brown ME et al (2010) Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 5:e11373PubMedCentralPubMedGoogle Scholar
  60. 60.
    Zhou T et al (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protocols 7:2080–2089. doi:
  61. 61.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedGoogle Scholar
  62. 62.
    Yu J et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801. doi: 10.1126/science.1172482 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674. doi: 10.1002/stem.201 PubMedGoogle Scholar
  64. 64.
    Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B 85:348–362Google Scholar
  65. 65.
    Jia F et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199. doi:
  66. 66.
    Okita K et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412. doi:
  67. 67.
    Park HY et al (2012) Efficient generation of virus-free iPS cells using liposomal magnetofection. PLoS One 7:e45812. doi: 10.1371/journal.pone.0045812 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Rais Y et al (2013) Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502: 65–70. doi: 10.1038/nature12587,
  69. 69.
    Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775. doi:
  70. 70.
    Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770. doi:
  71. 71.
    Sommer CA et al (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64–74. doi: 10.1002/stem.255 PubMedGoogle Scholar
  72. 72.
    Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476. doi:
  73. 73.
    Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. doi:
  74. 74.
    Miyoshi N et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638PubMedGoogle Scholar
  75. 75.
    Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654. doi: 10.1126/science.1239278 PubMedGoogle Scholar
  76. 76.
    Martins-Taylor K, Xu R-H (2012) Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells 30:22–27. doi: 10.1002/stem.705 PubMedGoogle Scholar
  77. 77.
    Baker DEC et al (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215. doi:
  78. 78.
    Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277PubMedGoogle Scholar
  79. 79.
    Lanford RE et al (2011) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201. doi: 10.1126/science.1178178 Google Scholar
  80. 80.
    Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM (2013) Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci 110:1881–1886. doi: 10.1073/pnas.1213515110 PubMedCentralPubMedGoogle Scholar
  81. 81.
    Grinnemo K-H, Sylvén C, Hovatta O, Dellgren G, Corbascio M (2008) Immunogenicity of human embryonic stem cells. Cell Tissue Res 331:67–78PubMedGoogle Scholar
  82. 82.
    Palmisano I et al (2012) Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4). Proc Natl Acad Sci 109:E2284–E2293. doi: 10.1073/pnas.1202174109 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Toivonen S et al (2013) Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Transl Med 2:83–93. doi: 10.5966/sctm.2012-0047 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Hussein SM et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62. doi:
  85. 85.
    Gore A et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67. doi:
  86. 86.
    Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290. doi:
  87. 87.
    Sommer CA et al (2012) Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells. PLoS One 7:e51711. doi: 10.1371/journal.pone.0051711 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Byers B et al (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate a-synuclein and are susceptible to oxidative stress. PLoS One 6:e26159PubMedCentralPubMedGoogle Scholar
  89. 89.
    Devine MJ et al (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the A-synuclein locus. Nat Commun 2:440PubMedCentralPubMedGoogle Scholar
  90. 90.
    Soldner F et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331PubMedCentralPubMedGoogle Scholar
  91. 91.
    Reinhardt P et al (2013) Genetic correction of a LRRK2 mutation in human iPSCs links Parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12:354–367. doi:
  92. 92.
    Liu G-H et al (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607. doi:
  93. 93.
    An MC et al (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:253–263. doi:
  94. 94.
    Liu G-H et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225. doi:
  95. 95.
    Liu G-H et al (2011) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8:688–694. doi:
  96. 96.
    Howden SE et al (2011) Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci 108:6537–6542. doi: 10.1073/pnas.1103388108 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Hockemeyer D et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27: 851–857. doi: 10.1038/nbt.1562,
  98. 98.
    Song H, Chung S-K, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell stem cell 6:80–89. doi:
  99. 99.
    Hockemeyer D et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734. doi:
  100. 100.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi: 10.1126/science.1231143 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Gruenert DC, Sargent RG (2012) Virus-mediated genetic surgery: homologous recombination with a little [ldquo]helper[rdquo] from my friends. Mol Ther Nucleic Acids 1:e2. doi: 10.1038/mtna.2011.7 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Ramirez CL et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375. doi:
  103. 103.
    Ma N et al (2013) TALEN-mediated gene correction in integration-free β-thalassemia iPSCs. J Biol Chem. doi: 10.1074/jbc.M113.496174 Google Scholar
  104. 104.
    Fu Y et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31: 822–826. doi: 10.1038/nbt.2623,
  105. 105.
    Ran FA, HSU et al (2013) Double-nicking by RNA-guided CRISPR CAS9 for enhanced genome editing specificity. Cell 154(6):1380–1389Google Scholar
  106. 106.
    Chung CY et al (2013) Identification and rescue of α-synuclein toxicity in Parkinson patient–derived neurons. Science. doi: 10.1126/science.1245296 Google Scholar
  107. 107.
    Ring KL et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11:100–109. doi:
  108. 108.
    Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041PubMedCentralPubMedGoogle Scholar
  109. 109.
    Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N (2009) Oligodendrocyte development and the onset of myelination in the human fetal brain. Frontiers Neuroanat 3. doi: 10.3389/neuro.05.005.2009
  110. 110.
    Pang ZP et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223. doi:
  111. 111.
    Ambasudhan R et al (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118. doi:
  112. 112.
    Yoo AS et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231. doi:
  113. 113.
    Qiang L et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146:359–371. doi:
  114. 114.
    Caiazzo M et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227. doi:
  115. 115.
    Pfisterer U et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348. doi: 10.1073/pnas.1105135108 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Addis RC et al (2011) Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 6:e28719. doi: 10.1371/journal.pone.0028719 PubMedCentralPubMedGoogle Scholar
  117. 117.
    Kim J et al (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9:413–419. doi:
  118. 118.
    Liu X et al (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 22:321–332. doi:
  119. 119.
    Meng F, Wang X, Gu P, Wang Z, Guo W (2013) Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery. Neuroscience 250:381–393. doi:
  120. 120.
    Son EY et al (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205–218. doi:
  121. 121.
    Kim J et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci 108:7838–7843. doi: 10.1073/pnas.1103113108 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Thier M et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–479. doi:
  123. 123.
    Han DW et al (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10:465–472. doi:
  124. 124.
    Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci 109:2527–2532. doi: 10.1073/pnas.1121003109 PubMedCentralPubMedGoogle Scholar
  125. 125.
    Sheng C et al (2012) Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 22:208–218. doi:
  126. 126.
    He X et al (1989) Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340:35–42PubMedGoogle Scholar
  127. 127.
    Crompton LA et al (2013) Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling. Stem Cell Res 11:1206–1221. doi:
  128. 128.
    Delli Carri A et al (2013) Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev Rep 9:461–474. doi: 10.1007/s12015-013-9441-8 Google Scholar
  129. 129.
    Delli Carri A et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140:301–312. doi: 10.1242/dev.084608 PubMedGoogle Scholar
  130. 130.
    Kriks S et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551PubMedCentralPubMedGoogle Scholar
  131. 131.
    Amoroso MW et al (2013) Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J Neurosci 33:574–586. doi: 10.1523/jneurosci.0906-12.2013 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Sundberg M et al (2011) A xeno-free culturing protocol for pluripotent stem cell-derived oligodendrocyte precursor cell production. Regen Med 6:449–460. doi: 10.2217/rme.11.36 PubMedGoogle Scholar
  133. 133.
    Kirkeby A et al (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1:703–714PubMedGoogle Scholar
  134. 134.
    Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Ann Rev Cell Dev Biol 25:431–456. doi: 10.1146/annurev.cellbio.042308.113423 Google Scholar
  135. 135.
    Millet S et al (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401:161–164PubMedGoogle Scholar
  136. 136.
    Brodski C et al (2003) Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain–hindbrain organizer. J Neurosci 23:4199–4207PubMedGoogle Scholar
  137. 137.
    Mishima Y, Lindgren AG, Chizhikov VV, Johnson RL, Millen KJ (2009) Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J Neurosci 29:11377–11384. doi: 10.1523/jneurosci.0969-09.2009 PubMedGoogle Scholar
  138. 138.
    Liang X et al (2011) Isl1 Is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47:215–222. doi:
  139. 139.
    Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM (2008) Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134:304–316. doi:
  140. 140.
    Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG (2008) Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 59:226–240PubMedCentralPubMedGoogle Scholar
  141. 141.
    Binamé F, Sakry D, Dimou L, Jolivel V, Trotter J (2013) NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 33:10858–10874. doi: 10.1523/jneurosci.5010-12.2013 PubMedGoogle Scholar
  142. 142.
    Mabie PC et al (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial–astroglial progenitor cells. J Neurosci 17:4112–4120PubMedGoogle Scholar
  143. 143.
    Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. doi: 10.1126/science.282.5391.1145 PubMedGoogle Scholar
  144. 144.
    Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454PubMedGoogle Scholar
  145. 145.
    Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435. doi: 10.1002/ar.1091700405 PubMedGoogle Scholar
  146. 146.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495. doi: 10.1083/jcb.9.2.493 PubMedCentralPubMedGoogle Scholar
  147. 147.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedGoogle Scholar
  148. 148.
    Broxmeyer HE et al (1990) Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning 8:76–91. doi: 10.1002/stem.5530080708 PubMedGoogle Scholar
  149. 149.
    Emerson SG et al (1985) Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity. J Clin Invest 76:1286–1290. doi: 10.1172/jci112087 PubMedCentralPubMedGoogle Scholar
  150. 150.
    Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedGoogle Scholar
  151. 151.
    Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. doi: 10.1091/mbc.E02-02-0105 PubMedCentralPubMedGoogle Scholar
  152. 152.
    Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedGoogle Scholar
  153. 153.
    De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106. doi:
  154. 154.
    Zhao Y et al (2009) Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS One 4:e4226. doi: 10.1371/journal.pone.0004226 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Zhao Y et al (2012) Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med 10:3PubMedCentralPubMedGoogle Scholar
  156. 156.
    Neirinckx V, Marquet A, Coste C, Rogister B, Wislet-Gendebien S (2013) Adult bone marrow neural crest stem cells and mesenchymal stem cells are not able to replace lost neurons in acute MPTP-lesioned mice. PLoS One 8:e64723. doi: 10.1371/journal.pone.0064723 PubMedCentralPubMedGoogle Scholar
  157. 157.
    Khoo MLM, Tao H, Meedeniya ACB, Mackay-Sim A, Ma DDF (2011) Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 6:e19025. doi: 10.1371/journal.pone.0019025 PubMedCentralPubMedGoogle Scholar
  158. 158.
    Wislet-Gendebien S et al (2012) In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow. PLoS One 7:e46425. doi: 10.1371/journal.pone.0046425 PubMedCentralPubMedGoogle Scholar
  159. 159.
    Xiong N et al (2010) Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats. Biol Blood Marrow Transplant 16:1519–1529PubMedGoogle Scholar
  160. 160.
    Somoza R, Juri C, Baes M, Wyneken U, Rubio FJ (2010) Intranigral transplantation of epigenetically induced BDNF-secreting human mesenchymal stem cells: implications for cell-based therapies in Parkinson’s disease. Biol Blood Marrow Transplant 16:1530–1540PubMedGoogle Scholar
  161. 161.
    Glavaski-Joksimovic A et al (2010) Glial cell line-derived neurotrophic factor–secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson’s disease. J Neurosci Res 88:2669–2681. doi: 10.1002/jnr.22435 PubMedGoogle Scholar
  162. 162.
    Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96. doi:
  163. 163.
    Kingham P et al (2013) Stimulating the neurotrophic and angiogenic properties of human adipose derived stem cells enhances nerve repair. Stem Cells 23(7):741–754Google Scholar
  164. 164.
    Dunnett SB, Bjo¨rklund A, Stenevi U, Iversen SD (1981) Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Res 229:209–217. doi:
  165. 165.
    Dunnett SB, Isacson O, Sirinathsinghji DJS, Clarke DJ, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions—III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24:813–820. doi:
  166. 166.
    Zetterström T et al (1986) In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res 362:344–349. doi:
  167. 167.
    Björklund A, Stenevi U, Dunnett SB, Iversen SD (1981) Functional reactivation of the deafferented neostriatum by nigral transplants. Nature 289:497–499PubMedGoogle Scholar
  168. 168.
    Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 199:307–333. doi:
  169. 169.
    Lindvall O, Rehncrona S, Brundin P et al (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. Arch Neurol 46:615–631. doi: 10.1001/archneur.1989.00520420033021 PubMedGoogle Scholar
  170. 170.
    Lindvall O et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:574–577. doi: 10.1126/science.2105529 PubMedGoogle Scholar
  171. 171.
    Freed CR et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327:1549–1555. doi: 10.1056/NEJM199211263272202 PubMedGoogle Scholar
  172. 172.
    Widner H et al (1992) Bilateral fetal mesencephalic grafting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-L,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 327:1556–1563. doi: 10.1056/NEJM199211263272203 PubMedGoogle Scholar
  173. 173.
    Spencer DD et al (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327:1541–1548. doi: 10.1056/NEJM199211263272201 PubMedGoogle Scholar
  174. 174.
    Kordower JH et al (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 332:1118–1124. doi: 10.1056/NEJM199504273321702 PubMedGoogle Scholar
  175. 175.
    Peschanski M et al (1994) Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117:487–499. doi: 10.1093/brain/117.3.487 PubMedGoogle Scholar
  176. 176.
    Henderson BH, Clough CG, Hughes RC, Hitchcock ER, Kenny BG (1991) IMplantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson’s disease. Arch Neurol 48:822–827. doi: 10.1001/archneur.1991.00530200062020 PubMedGoogle Scholar
  177. 177.
    Freed CR et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719. doi: 10.1056/NEJM200103083441002 PubMedGoogle Scholar
  178. 178.
    Olanow CW et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414. doi: 10.1002/ana.10720 PubMedGoogle Scholar
  179. 179.
    Barker RA, Barrett J, Mason SL, Björklund A (2013) Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 12:84–91. doi:
  180. 180.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506PubMedGoogle Scholar
  181. 181.
    Li J-Y et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503PubMedGoogle Scholar
  182. 182.
    Mendez I et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14:507–509PubMedCentralPubMedGoogle Scholar
  183. 183.
    Politis M et al (2010) Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2:38ra46. doi: 10.1126/scitranslmed.3000976 PubMedGoogle Scholar
  184. 184.
    Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833. Epub 2007 Apr 1823 (2007)Google Scholar
  185. 185.
    Evans JR, Mason SL, Barker RA (2012) In: Dunnett Stephen B, Anders B (eds) Progress in brain research, vol 200. Elsevier, pp 169–198Google Scholar
  186. 186.
    Winkler C, Kirik D, Björklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28:86–92. doi:
  187. 187.
    Rosser AE et al (2002) Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J Neurol Neurosurg Psychiatry 73:678–685. doi: 10.1136/jnnp.73.6.678 PubMedCentralPubMedGoogle Scholar
  188. 188.
    Keene CD et al (2009) A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 117:329–338. doi: 10.1007/s00401-008-0465-0 PubMedCentralPubMedGoogle Scholar
  189. 189.
    Bachoud-Lévi A-C et al (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309. doi:
  190. 190.
    Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66:646–661PubMedCentralPubMedGoogle Scholar
  191. 191.
    Nguyen HN et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280PubMedCentralPubMedGoogle Scholar
  192. 192.
    Polo JM et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855. doi:
  193. 193.
    Lashuel HA et al (2002) α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322(5):1089–1102PubMedGoogle Scholar
  194. 194.
    Osafune K et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315. doi:
  195. 195.
    Lund RJ, Narva E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13:732–744. doi:
  196. 196.
    Heiskanen A et al (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25:197–202. doi: 10.1634/stemcells.2006-0444 PubMedGoogle Scholar
  197. 197.
    Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232PubMedGoogle Scholar
  198. 198.
    Draper JS et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54PubMedGoogle Scholar
  199. 199.
    Catalina P, et al (2008) Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? 7:76Google Scholar
  200. 200.
    Takahashi K, Narita M, Yokura M, Ichisaka T, Yamanaka S (2009) Human induced pluripotent stem cells on autologous feeders. PLoS One 4:e8067PubMedCentralPubMedGoogle Scholar
  201. 201.
    Gurjala AN, Liu WR, Mogford JE, Procaccini PSA, Mustoe TA (2005) Age-dependent response of primary human dermal fibroblasts to oxidative stress: cell survival, pro-survival kinases, and entrance into cellular senescence. Wound Repair Regen 13:565–575PubMedGoogle Scholar
  202. 202.
    Awe J et al (2013) Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Res Ther 4:87PubMedCentralPubMedGoogle Scholar
  203. 203.
    Karumbayaram S et al (2012) From skin biopsy to neurons through a pluripotent intermediate under good manufacturing practice protocols. Stem Cells Transl Med 1:36–43. doi: 10.5966/sctm.2011-0001 PubMedCentralPubMedGoogle Scholar
  204. 204.
    Yagi T et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539. doi: 10.1093/hmg/ddr394 PubMedGoogle Scholar
  205. 205.
    Israel MA et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220. doi:
  206. 206.
    Kondo T et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:487–496. doi:
  207. 207.
    Cole GM, Frautschy SA (2006) Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr Health 18:249–259. doi: 10.1177/026010600601800307 PubMedGoogle Scholar
  208. 208.
    Cooper O et al (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4:141ra190. doi: 10.1126/scitranslmed.3003985 Google Scholar
  209. 209.
    Sánchez-Danés A et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395. doi: 10.1002/emmm.201200215 PubMedCentralPubMedGoogle Scholar
  210. 210.
    Sanders LH et al (2013) LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: Reversal by gene correction. Neurobiol Dis. doi:
  211. 211.
    Gloeckner CJ et al (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15:223–232. doi: 10.1093/hmg/ddi439 PubMedGoogle Scholar
  212. 212.
    West AB et al (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102:16842–16847. doi: 10.1073/pnas.0507360102 PubMedCentralPubMedGoogle Scholar
  213. 213.
    Camnasio S et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46:41–51. doi:
  214. 214.
    Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742. doi:
  215. 215.
    Cannella M et al (2009) DNA instability in replicating Huntington’s disease lymphoblasts. BMC Med Genet 10:11PubMedCentralPubMedGoogle Scholar
  216. 216.
    Dragileva E et al (2009) Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. Neurobiol Dis 33:37–47. doi:
  217. 217.
    Kennedy L et al (2003) Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum Mol Genet 12:3359–3367. doi: 10.1093/hmg/ddg352 PubMedGoogle Scholar
  218. 218.
    Jeon I et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30:2054–2062. doi: 10.1002/stem.1135 PubMedGoogle Scholar
  219. 219.
    The HD iPSc Consortium (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:264–278. doi:
  220. 220.
    Egawa N et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104. doi: 10.1126/scitranslmed.3004052 PubMedGoogle Scholar
  221. 221.
    Tollervey JR et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. doi:
  222. 222.
    Polymenidou M et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468. doi:
  223. 223.
    Hagell P et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628PubMedGoogle Scholar
  224. 224.
    Bohnen NI et al (2013) Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81:1611–1616PubMedCentralPubMedGoogle Scholar
  225. 225.
    Fox SH (2013) Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs 73:1405–1415. doi: 10.1007/s40265-013-0105-4 PubMedGoogle Scholar
  226. 226.
    Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237. doi:
  227. 227.
    Luk KC et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. doi: 10.1126/science.1227157 PubMedCentralPubMedGoogle Scholar
  228. 228.
    Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470:540–542PubMedGoogle Scholar
  229. 229.
    Frost B, Jacks RL, Diamond MI (2009) Propagation of Tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. doi: 10.1074/jbc.M808759200 PubMedCentralPubMedGoogle Scholar
  230. 230.
    Desplats P et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci 106:13010–13015. doi: 10.1073/pnas.0903691106 PubMedCentralPubMedGoogle Scholar
  231. 231.
    de Calignon A et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697. doi:
  232. 232.
    Masuda-Suzukake M et al (2013) Prion-like spreading of pathological α-synuclein in brain. Brain 136:1128–1138. doi: 10.1093/brain/awt037 PubMedCentralPubMedGoogle Scholar
  233. 233.
    Clavaguera F et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913. doi:
  234. 234.
    Moreno JA et al (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5:206ra138. doi: 10.1126/scitranslmed.3006767 PubMedGoogle Scholar
  235. 235.
    Juopperi T et al (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17PubMedCentralPubMedGoogle Scholar
  236. 236.
    Han J et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490. doi: 10.1038/ncb2738,
  237. 237.
    Kon T et al (2013) ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neuropathology 34(1):19–26. doi: 10.1111/neup.12056 PubMedGoogle Scholar
  238. 238.
    Wang IF, Wu L-S, Shen CKJ (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14:479–485. doi:
  239. 239.
    Xu Z-S (2012) Does a loss of TDP-43 function cause neurodegeneration? Mol Neurodegeneration 7:27Google Scholar
  240. 240.
    Nonaka T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134PubMedGoogle Scholar
  241. 241.
    Wolswijk G (2002) Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125:338–349. doi: 10.1093/brain/awf031 PubMedGoogle Scholar
  242. 242.
    Shen S et al (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11:1024–1034. doi:
  243. 243.
    Payne NL et al (2013) Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 22:1409–1425. doi: 10.3727/096368912x657620 PubMedGoogle Scholar
  244. 244.
    Bai L et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203. doi: 10.1002/glia.20841 PubMedCentralPubMedGoogle Scholar
  245. 245.
    Connick P et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11:150–156. doi:
  246. 246.
    Rice CM et al (2010) Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther 87:679–685. doi:

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Clinical and Experimental Neuroscience, School of Clinical SciencesUniversité du LukembourgBristolUK

Personalised recommendations