Advertisement

Stem Cells of the Reproductive System: At a Glance

  • Phillip G. Stubblefield
Chapter

Abstract

Stem cells have been isolated, expanded, and characterized from most of the female organs of reproduction and from the testis and prostate of males. The cells have the characteristics of other mesenchymal stem cells. They are multipotent and inducible in culture to form cells of all three lineages, ectoderm, mesoderm, and endoderm. They do not form teratomas when xenografted in the nude mouse model. Epithelial and stromal cells of the endometrium obtained by surgery, biopsy, or, more recently, directly from menstrual blood have been differentiated into pancreatic islet-like cells producing insulin, neural-like cells producing dopamine and DOPAC, neurotrophic growth factors, and cardiomyocytes. Transplants of these cells have been effective in murine models of human chronic illness, diabetes, chronic limb ischemia, multiple sclerosis, stroke, and congestive heart failure. Human trials of endometrial cells for severe congestive heart failure are in progress. Recently, fallopian tube stem cells have been isolated and are beginning to be used therapeutically as well. The ovary is a source of germline cells that give promise for new treatment of premature ovarian senescence and somatic stem cells as another potential source for regenerative medicine. Spermatogonial cells of the testis are being studied for fertility preservation and restoration and are being differentiated into somatic stem cells for treatment, still in animal models. The prostate is another source of somatic stem cells but is mainly of interest at present because of the roles of prostatic stem cells in benign prostatic hypertrophy and prostatic cancer, both very common problems. Cancer stem cells of the ovary are also of critical importance for possible leads to more effective therapies for ovarian cancer, a highly lethal illness because it is asymptomatic until after metastasis in most cases.

Keywords

Stem Cell Mesenchymal Stem Cell Hepatocyte Growth Factor Seminiferous Tubule Side Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kyurkchiev S, Galdolfi F, Hayrabedyan S, Brevini TAL, Dimmitrov R, Fitzgerald JS et al (2012) Stem cells in the reproductive system. Am J Reprod Immunol 67:445–462PubMedCrossRefGoogle Scholar
  2. 2.
    Chan RWS, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750PubMedCrossRefGoogle Scholar
  3. 3.
    Gargett CE, Masuda H (2010) Adult stem/progenitor cells of the endometrium. Mol Hum Reprod 16:813–834CrossRefGoogle Scholar
  4. 4.
    Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwani A, Nagashima T et al (2007) Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/Gcnull immunodeficient mice. Proc Natl Acad Sci USA 104:1925–1930PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Patel AN, Silva F (2008) Menstrual blood stromal cells: the potential for regenerative medicine. Regen Med 3:443–444PubMedCrossRefGoogle Scholar
  6. 6.
    Indumathi S, Harikrishnan R, Rajkumar JS, Sudarsanam D, Dhanasekaran M (2013) Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell Tissue Res 352:537–549PubMedCrossRefGoogle Scholar
  7. 7.
    Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J et al (2007) Endometrial regenerative cells. A novel stem cell population. J Transl Med 5:57–67PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Johnson J, Bagley J, Skaznik-Winkiel M, Lee HJ, Adams GB, Nikura Y et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315PubMedCrossRefGoogle Scholar
  9. 9.
    Rossignoli F, Casellli A, Grisendi G, Piccinno S, Burns JS, Murgia A et al (2013) Isolation, characterization and transduction of endometrial decidual tissue multipotent mesenchymal/stem cells from menstrual blood. BioMed Res Int 2013:Article ID 901821, 14 pagesGoogle Scholar
  10. 10.
    Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T et al (2008) Novel cardiac precursor-like cells from human menstrual blood derived mesenchymal stem cells. Stem Cells 26:1695–1704PubMedCrossRefGoogle Scholar
  11. 11.
    Yang XY, Wang W, Li X (2013) In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim. doi: 10.1007/s11626-013-9688-z PubMedCentralGoogle Scholar
  12. 12.
    Li H-Y, Chen Y-J, Chen S-J, Kao C-L, Tseng L-M, Lo W-L et al (2010) Induction of insulin-producing cells derived from endometrial mesenchymal stem-like cells. J Pharmacol Exp Ther 335:817–829PubMedCrossRefGoogle Scholar
  13. 13.
    Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS (2011) Derivation of insulin producing cells from human endometrial stromal cells and use in the treatment of murine diabetes. Mol Ther 11:2065–2071CrossRefGoogle Scholar
  14. 14.
    Tamagawa T, Ishiwata I, Sato K, Nakamura Y (2009) Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell 22:55–63PubMedCrossRefGoogle Scholar
  15. 15.
    Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN et al (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep 19:art:e00015. doi: 10.1042/CBR20110009
  16. 16.
    Wolff EF, Gao X-B, Yao KV, Andrews ZB, Du H, Elsworth JD et al (2011) Endometrial stem cell transplantation restores dopamine production in Parkinson’s disease model. Cell Mol Med 15:747–755CrossRefGoogle Scholar
  17. 17.
    Peron JPS, Jazedje T, Brandao WN, Perin PM, Maluf M, Evangelista LP et al (2012) Human endometrial-derived mesenchymal stem cells suppress inflammation in the central nervous system of EAE mice. Stem Cell Rev Rep 8:940–952CrossRefGoogle Scholar
  18. 18.
    Murphy MP, Wang H, Patel AN, Kambhampatia S, Angle N, Chan K et al (2008) Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia. J Transl Med 6:45. doi: 10.1186/1479-5876-6-45 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kaneko YK, Cesar V (2013) Stem cell transplantation for neuroprotection in stroke. Brain Sci 3:239–261PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Borlongan CV, Kaneko Y, Maki M, Yu S-J, Ali M, Allickson JG et al (2010) Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–451PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization and differentiation. Cell Transplant 17:303–311PubMedCrossRefGoogle Scholar
  22. 22.
    Wang H, Jin P, Sabatino M, Ren J, Civini S, Bogin V et al (2012) Comparison of endometrial regenerative cells and bone marrow stromal cells. J Transl Med 10:207. http://www.translational-medicine.com/content/10/1/207
  23. 23.
    Bockeria L, Bogin V, Bockeria O, Le T, Alekyan B, Woods EJ et al (2013) Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med 11:56. Http://www.translational-medicine.com/content/11/1/56
  24. 24.
    Jazedje T, Perin PM, Maluf M, Halpern S, Secco M, Bueno DF et al (2009) Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J Transl Med 18:46. doi: 10.1186/1479-5876-7-46 CrossRefGoogle Scholar
  25. 25.
    Jazedje T, Bueno DF, Almeda BV, Caetano H, Czeresnia CE, Perin PM et al (2012) Human fallopian tube mesenchymal stromal cells enhance bone regeneration in a xenotransplanted model. Stem Cell Rev 8:355–362PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Stimpfel M, Skutella T, Cvjeticanin B, Meznarik M, Dove P, Novakovic S et al (2013) Isolation, characterization and differentiation of cells expressing pluripotent/multipotent markers from adult human ovaries. Cell Tissue Res. doi: 10.1007/s00441-013-1677-8
  27. 27.
    Bukovsky A, Svetllllikova M, Caudle MR (2005) Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 3:17PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Honda A, Hirose M, Hara K, Matoba S, Inoue K, Miki H et al (2007) Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci U S A 104:12389–12394PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL (2012) Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women. Nat Med 18:413–421PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L et al (2009) Production of offspring from a germline stem cell derived from neonatal ovaries. Nat Cell Biol 11:631–636PubMedCrossRefGoogle Scholar
  31. 31.
    Ratajczak MZ, Kucia M, Majka RR, Ratajczak J (2004) Heterogeneous populations of bone marrow stem cells-are we spotting on the same cells from different angles. Folia Histochem Cytobiol 42:139–146PubMedGoogle Scholar
  32. 32.
    Ratajczak MZ, Zuba-Surma E, Kucia M, Poniewierska A, Suszynskas M, Rarajczak J (2012) Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 57:1–17PubMedCrossRefGoogle Scholar
  33. 33.
    Bhartiya D, Unni S, Parte S, Anand S (2013) Very small embryonic-like stem cells: Implications in reproductive Biology. BioMed Res Intern 2013:Article ID 682326, 10 pages. http://dx.doi.org/10.1155/2013/682326
  34. 34.
    Dunlop CE, Telfer EE, Anderson RA (2013) Ovarian stem cells-potential roles in infertility treatment and fertility. Maturitas. http://dx.doi.org/10.1016/j.maturitas.2013.04.017
  35. 35.
    Regaud C (1901) Etudes sur la structure des tube seminifieres et sur la structures chez le mammieres. Arch Anat Microscop 4:101–156; 231–380Google Scholar
  36. 36.
    Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236PubMedGoogle Scholar
  37. 37.
    Aman RP (2008) The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29:469–487CrossRefGoogle Scholar
  38. 38.
    Meng X, Lindahl M, HJyvonen ME, Parvinen M, de Rooij DG, Hess MW et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493PubMedCrossRefGoogle Scholar
  39. 39.
    Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells: influence of GDNF. Dev Biol 279:114–124PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A et al (2005) Long term culture of mouse male germline stem cells under serum or feeder-free conditions. Biol Reprod 72:985–991PubMedCrossRefGoogle Scholar
  41. 41.
    He Z, Kokkinaki M, Jian J, Dobrinski I, Dym M (2010) Isolation, characterization and culture of human spermatogonia. Biol Reprod 82:363–372PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Piravar Z, Jeddi-Tehrani M, Sadeghi MR, Arash M, Eidi A, Akhondi MM (2013) In vitro culture of human testicular stem cells on feed-free condition. J Reprod Infertil 14:17–22PubMedCentralPubMedGoogle Scholar
  43. 43.
    Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M et al (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349PubMedCrossRefGoogle Scholar
  44. 44.
    Kossack N, Meneses J, Shefl S, Nguyen N, Chavez S, Nicholas C et al (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138–149PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C et al (2009) Pluripotent stem cells derived from adult human testes. Stem Cells Dev 18:1115–1125PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt KT, Andersen CY (2012) Recommendations for fertility preservation in patients with lymphomas. J Assist Reprod Genet 29:473–477PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Jahnukainen K, Stukenborg J-B (2012) Present and future prospects of male fertility preservation for children and adolescents. J Clin Endocrinol Metab 97:4341–4351PubMedCrossRefGoogle Scholar
  48. 48.
    Oatley JM, Brinster RL (2012) The germline cell niche unit in mammalian testes. Physiol Rev 92:577–595PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Koruji M, Shahverdi A, Arghavan J, Piryaei A, Lakpour MR, Sedighi MAG (2012) Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet 29:957–967PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Bojnordi MN, Movahedin M, Tiraihi T, Javan M, Hamidabadi HG (2013) Oligoprogenitor cells derived from spermatogonia stem cells improve remyelination in demyelination mode. Mol Biotechnol. doi: 10.1007/s12033-013-9722-0 Google Scholar
  51. 51.
    Iwasa T, Baba S, Doi H, Kaichi S, Yokoo N, Mima T et al (2010) Neonatal mouse testis-derived multipotent germ line stem cells improve the cardiac function of acute ischemic heart mouse model. Biochem Biophys Res Commun 400:27–33PubMedCrossRefGoogle Scholar
  52. 52.
    Shen MM, Shen-Abate C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate, epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114(Pt 21):3865–3872PubMedGoogle Scholar
  54. 54.
    Richardson GD (2004) CD133, a novel marker for human prostate epithelial stem cells. J Cell Sci 117:3539–3545PubMedCrossRefGoogle Scholar
  55. 55.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  56. 56.
    Podberezin M, Wen J, Chang C-C (2013) Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med 137:1111–1116PubMedCrossRefGoogle Scholar
  57. 57.
    Lopez J, Valdez-Morales FJ, Benitez-Bribiesca L, Cerbon M, Garcia Carranca A (2013) Normal and cancer stem cells of the human female reproductive system. Reprod Biol Endocrinol 11:53PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Tomao F, Papa A, Rossi L, Strudel M, Vici MP, Tomao S (2013) Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res 32:48PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Palk DY, Janzen DM, Schafenacker AM, Velasco VS, Sheng MS, Chung D et al (2012) Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells 30:2487–2497CrossRefGoogle Scholar
  60. 60.
    Karst AM, Levanon K, Drapkin R (2011) Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci U S A 108:7547–7552PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  62. 62.
    Wang G, Wang Z, Sarkar FH, Wei W (2012) Targeting prostate cancer stem cells for cancer therapy. Discov Med 13:135–142PubMedCentralPubMedGoogle Scholar
  63. 63.
    Clark AT (2007) The stem cell identity of testicular cancer. Stem Cell Rev 3:49–59PubMedCrossRefGoogle Scholar
  64. 64.
    Costa FF, Le Blanc K, Brodin B (2007) Concise review: cancer/testis antigens, stem cells and cancer. Stem Cells 25:707–711PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynecology, School of MedicineBoston UniversityBostonUSA

Personalised recommendations