Skip to main content

Stem Cells of the Reproductive System: At a Glance

  • Chapter
  • First Online:
Stem Cell Therapy for Organ Failure
  • 811 Accesses

Abstract

Stem cells have been isolated, expanded, and characterized from most of the female organs of reproduction and from the testis and prostate of males. The cells have the characteristics of other mesenchymal stem cells. They are multipotent and inducible in culture to form cells of all three lineages, ectoderm, mesoderm, and endoderm. They do not form teratomas when xenografted in the nude mouse model. Epithelial and stromal cells of the endometrium obtained by surgery, biopsy, or, more recently, directly from menstrual blood have been differentiated into pancreatic islet-like cells producing insulin, neural-like cells producing dopamine and DOPAC, neurotrophic growth factors, and cardiomyocytes. Transplants of these cells have been effective in murine models of human chronic illness, diabetes, chronic limb ischemia, multiple sclerosis, stroke, and congestive heart failure. Human trials of endometrial cells for severe congestive heart failure are in progress. Recently, fallopian tube stem cells have been isolated and are beginning to be used therapeutically as well. The ovary is a source of germline cells that give promise for new treatment of premature ovarian senescence and somatic stem cells as another potential source for regenerative medicine. Spermatogonial cells of the testis are being studied for fertility preservation and restoration and are being differentiated into somatic stem cells for treatment, still in animal models. The prostate is another source of somatic stem cells but is mainly of interest at present because of the roles of prostatic stem cells in benign prostatic hypertrophy and prostatic cancer, both very common problems. Cancer stem cells of the ovary are also of critical importance for possible leads to more effective therapies for ovarian cancer, a highly lethal illness because it is asymptomatic until after metastasis in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this usage “decidual” does not refer to pregnancy endometrium but rather “falling off or shed seasonally.”

References

  1. Kyurkchiev S, Galdolfi F, Hayrabedyan S, Brevini TAL, Dimmitrov R, Fitzgerald JS et al (2012) Stem cells in the reproductive system. Am J Reprod Immunol 67:445–462

    Article  CAS  PubMed  Google Scholar 

  2. Chan RWS, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  CAS  PubMed  Google Scholar 

  3. Gargett CE, Masuda H (2010) Adult stem/progenitor cells of the endometrium. Mol Hum Reprod 16:813–834

    Article  Google Scholar 

  4. Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwani A, Nagashima T et al (2007) Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/Gcnull immunodeficient mice. Proc Natl Acad Sci USA 104:1925–1930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Patel AN, Silva F (2008) Menstrual blood stromal cells: the potential for regenerative medicine. Regen Med 3:443–444

    Article  PubMed  Google Scholar 

  6. Indumathi S, Harikrishnan R, Rajkumar JS, Sudarsanam D, Dhanasekaran M (2013) Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell Tissue Res 352:537–549

    Article  CAS  PubMed  Google Scholar 

  7. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J et al (2007) Endometrial regenerative cells. A novel stem cell population. J Transl Med 5:57–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Johnson J, Bagley J, Skaznik-Winkiel M, Lee HJ, Adams GB, Nikura Y et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315

    Article  CAS  PubMed  Google Scholar 

  9. Rossignoli F, Casellli A, Grisendi G, Piccinno S, Burns JS, Murgia A et al (2013) Isolation, characterization and transduction of endometrial decidual tissue multipotent mesenchymal/stem cells from menstrual blood. BioMed Res Int 2013:Article ID 901821, 14 pages

    Google Scholar 

  10. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T et al (2008) Novel cardiac precursor-like cells from human menstrual blood derived mesenchymal stem cells. Stem Cells 26:1695–1704

    Article  CAS  PubMed  Google Scholar 

  11. Yang XY, Wang W, Li X (2013) In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim. doi:10.1007/s11626-013-9688-z

    PubMed Central  Google Scholar 

  12. Li H-Y, Chen Y-J, Chen S-J, Kao C-L, Tseng L-M, Lo W-L et al (2010) Induction of insulin-producing cells derived from endometrial mesenchymal stem-like cells. J Pharmacol Exp Ther 335:817–829

    Article  CAS  PubMed  Google Scholar 

  13. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS (2011) Derivation of insulin producing cells from human endometrial stromal cells and use in the treatment of murine diabetes. Mol Ther 11:2065–2071

    Article  Google Scholar 

  14. Tamagawa T, Ishiwata I, Sato K, Nakamura Y (2009) Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell 22:55–63

    Article  PubMed  Google Scholar 

  15. Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN et al (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep 19:art:e00015. doi:10.1042/CBR20110009

  16. Wolff EF, Gao X-B, Yao KV, Andrews ZB, Du H, Elsworth JD et al (2011) Endometrial stem cell transplantation restores dopamine production in Parkinson’s disease model. Cell Mol Med 15:747–755

    Article  CAS  Google Scholar 

  17. Peron JPS, Jazedje T, Brandao WN, Perin PM, Maluf M, Evangelista LP et al (2012) Human endometrial-derived mesenchymal stem cells suppress inflammation in the central nervous system of EAE mice. Stem Cell Rev Rep 8:940–952

    Article  CAS  Google Scholar 

  18. Murphy MP, Wang H, Patel AN, Kambhampatia S, Angle N, Chan K et al (2008) Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia. J Transl Med 6:45. doi:10.1186/1479-5876-6-45

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kaneko YK, Cesar V (2013) Stem cell transplantation for neuroprotection in stroke. Brain Sci 3:239–261

    Article  PubMed Central  PubMed  Google Scholar 

  20. Borlongan CV, Kaneko Y, Maki M, Yu S-J, Ali M, Allickson JG et al (2010) Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization and differentiation. Cell Transplant 17:303–311

    Article  PubMed  Google Scholar 

  22. Wang H, Jin P, Sabatino M, Ren J, Civini S, Bogin V et al (2012) Comparison of endometrial regenerative cells and bone marrow stromal cells. J Transl Med 10:207. http://www.translational-medicine.com/content/10/1/207

  23. Bockeria L, Bogin V, Bockeria O, Le T, Alekyan B, Woods EJ et al (2013) Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med 11:56. Http://www.translational-medicine.com/content/11/1/56

  24. Jazedje T, Perin PM, Maluf M, Halpern S, Secco M, Bueno DF et al (2009) Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J Transl Med 18:46. doi:10.1186/1479-5876-7-46

    Article  Google Scholar 

  25. Jazedje T, Bueno DF, Almeda BV, Caetano H, Czeresnia CE, Perin PM et al (2012) Human fallopian tube mesenchymal stromal cells enhance bone regeneration in a xenotransplanted model. Stem Cell Rev 8:355–362

    Article  PubMed Central  PubMed  Google Scholar 

  26. Stimpfel M, Skutella T, Cvjeticanin B, Meznarik M, Dove P, Novakovic S et al (2013) Isolation, characterization and differentiation of cells expressing pluripotent/multipotent markers from adult human ovaries. Cell Tissue Res. doi:10.1007/s00441-013-1677-8

  27. Bukovsky A, Svetllllikova M, Caudle MR (2005) Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 3:17

    Article  PubMed Central  PubMed  Google Scholar 

  28. Honda A, Hirose M, Hara K, Matoba S, Inoue K, Miki H et al (2007) Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci U S A 104:12389–12394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL (2012) Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women. Nat Med 18:413–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L et al (2009) Production of offspring from a germline stem cell derived from neonatal ovaries. Nat Cell Biol 11:631–636

    Article  CAS  PubMed  Google Scholar 

  31. Ratajczak MZ, Kucia M, Majka RR, Ratajczak J (2004) Heterogeneous populations of bone marrow stem cells-are we spotting on the same cells from different angles. Folia Histochem Cytobiol 42:139–146

    PubMed  Google Scholar 

  32. Ratajczak MZ, Zuba-Surma E, Kucia M, Poniewierska A, Suszynskas M, Rarajczak J (2012) Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 57:1–17

    Article  CAS  PubMed  Google Scholar 

  33. Bhartiya D, Unni S, Parte S, Anand S (2013) Very small embryonic-like stem cells: Implications in reproductive Biology. BioMed Res Intern 2013:Article ID 682326, 10 pages. http://dx.doi.org/10.1155/2013/682326

  34. Dunlop CE, Telfer EE, Anderson RA (2013) Ovarian stem cells-potential roles in infertility treatment and fertility. Maturitas. http://dx.doi.org/10.1016/j.maturitas.2013.04.017

  35. Regaud C (1901) Etudes sur la structure des tube seminifieres et sur la structures chez le mammieres. Arch Anat Microscop 4:101–156; 231–380

    Google Scholar 

  36. Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–236

    CAS  PubMed  Google Scholar 

  37. Aman RP (2008) The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29:469–487

    Article  Google Scholar 

  38. Meng X, Lindahl M, HJyvonen ME, Parvinen M, de Rooij DG, Hess MW et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  39. Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells: influence of GDNF. Dev Biol 279:114–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A et al (2005) Long term culture of mouse male germline stem cells under serum or feeder-free conditions. Biol Reprod 72:985–991

    Article  CAS  PubMed  Google Scholar 

  41. He Z, Kokkinaki M, Jian J, Dobrinski I, Dym M (2010) Isolation, characterization and culture of human spermatogonia. Biol Reprod 82:363–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Piravar Z, Jeddi-Tehrani M, Sadeghi MR, Arash M, Eidi A, Akhondi MM (2013) In vitro culture of human testicular stem cells on feed-free condition. J Reprod Infertil 14:17–22

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M et al (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349

    Article  CAS  PubMed  Google Scholar 

  44. Kossack N, Meneses J, Shefl S, Nguyen N, Chavez S, Nicholas C et al (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C et al (2009) Pluripotent stem cells derived from adult human testes. Stem Cells Dev 18:1115–1125

    Article  PubMed Central  PubMed  Google Scholar 

  46. Schmidt KT, Andersen CY (2012) Recommendations for fertility preservation in patients with lymphomas. J Assist Reprod Genet 29:473–477

    Article  PubMed Central  PubMed  Google Scholar 

  47. Jahnukainen K, Stukenborg J-B (2012) Present and future prospects of male fertility preservation for children and adolescents. J Clin Endocrinol Metab 97:4341–4351

    Article  CAS  PubMed  Google Scholar 

  48. Oatley JM, Brinster RL (2012) The germline cell niche unit in mammalian testes. Physiol Rev 92:577–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Koruji M, Shahverdi A, Arghavan J, Piryaei A, Lakpour MR, Sedighi MAG (2012) Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet 29:957–967

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bojnordi MN, Movahedin M, Tiraihi T, Javan M, Hamidabadi HG (2013) Oligoprogenitor cells derived from spermatogonia stem cells improve remyelination in demyelination mode. Mol Biotechnol. doi:10.1007/s12033-013-9722-0

    Google Scholar 

  51. Iwasa T, Baba S, Doi H, Kaichi S, Yokoo N, Mima T et al (2010) Neonatal mouse testis-derived multipotent germ line stem cells improve the cardiac function of acute ischemic heart mouse model. Biochem Biophys Res Commun 400:27–33

    Article  CAS  PubMed  Google Scholar 

  52. Shen MM, Shen-Abate C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate, epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114(Pt 21):3865–3872

    CAS  PubMed  Google Scholar 

  54. Richardson GD (2004) CD133, a novel marker for human prostate epithelial stem cells. J Cell Sci 117:3539–3545

    Article  CAS  PubMed  Google Scholar 

  55. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  56. Podberezin M, Wen J, Chang C-C (2013) Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med 137:1111–1116

    Article  PubMed  Google Scholar 

  57. Lopez J, Valdez-Morales FJ, Benitez-Bribiesca L, Cerbon M, Garcia Carranca A (2013) Normal and cancer stem cells of the human female reproductive system. Reprod Biol Endocrinol 11:53

    Article  PubMed Central  PubMed  Google Scholar 

  58. Tomao F, Papa A, Rossi L, Strudel M, Vici MP, Tomao S (2013) Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res 32:48

    Article  PubMed Central  PubMed  Google Scholar 

  59. Palk DY, Janzen DM, Schafenacker AM, Velasco VS, Sheng MS, Chung D et al (2012) Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells 30:2487–2497

    Article  Google Scholar 

  60. Karst AM, Levanon K, Drapkin R (2011) Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci U S A 108:7547–7552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  62. Wang G, Wang Z, Sarkar FH, Wei W (2012) Targeting prostate cancer stem cells for cancer therapy. Discov Med 13:135–142

    PubMed Central  PubMed  Google Scholar 

  63. Clark AT (2007) The stem cell identity of testicular cancer. Stem Cell Rev 3:49–59

    Article  CAS  PubMed  Google Scholar 

  64. Costa FF, Le Blanc K, Brodin B (2007) Concise review: cancer/testis antigens, stem cells and cancer. Stem Cells 25:707–711

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip G. Stubblefield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Stubblefield, P.G. (2014). Stem Cells of the Reproductive System: At a Glance. In: Somasundaram, I. (eds) Stem Cell Therapy for Organ Failure. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2110-4_18

Download citation

Publish with us

Policies and ethics