Advertisement

Promises of Stem Cell Research and Therapeutics

  • Indumathi Somasundaram
  • Kanmani Anandan
  • Dhanasekaran Marappagounder
Chapter

Abstract

Stem cells are smart cells of the body. It is the origin of life. As stated by the great pathologist Rudolf Virchow, “All cells come from cells.” Today it is proved with evidence that all cells come from stem cells. The stem cells are derived from embryo, fetal tissues, and adult organs. Explicitly, stem cells can generate daughter cells identical to their mother (self-renewal), and under certain physiologic or experimental condition, depending on the source, they can differentiate into any type of cells such as heart muscle cells, blood cells, or the insulin-producing cells of the pancreas (differentiated cells). As the plant leaves flourishes from the stem, the body nourishes from the stem cells resting in our body. A more complete description of a stem cell includes a consideration of replication capacity, clonality, and potency. Thus, stem cells are considered to be unique cells with special attributes. It is these special attributes that offer the vast potential serving as a repair system of the body. Ever since the discovery of stem cells [1–5], scientists have dreamed of using them to repair damaged tissue or create new organs and has revolutionized the field of medicine.

Keywords

Stem Cell Embryonic Stem Cell Adult Stem Cell Stem Cell Research Human Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56(3):283–294PubMedGoogle Scholar
  2. 2.
    Kolb HJ, Holler E (1997) Hematopoietic transplantation: state of the art. Stem Cells 15(Suppl 1):151–157, discussion 158PubMedGoogle Scholar
  3. 3.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedGoogle Scholar
  4. 4.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedGoogle Scholar
  5. 5.
    Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168PubMedGoogle Scholar
  6. 6.
    Gilbert SF (2000) Developmental biology, 6th edn. Sinauer Associates, SunderlandGoogle Scholar
  7. 7.
    Thomas ED, Lochte HL Jr, Lu WC, Ferrebee J (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257:491PubMedGoogle Scholar
  8. 8.
    Theresa H, McCarthy PL Jr, Hassebroek A, Bredeson C, Gajewski JL et al (2013) Significant improvement in survival after allogeneic hematopoietic cell transplantation during a period of significantly increased use, older recipient age, and use of unrelated donors. J Clin Oncol 31(19):2437–2449Google Scholar
  9. 9.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  10. 10.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638PubMedCentralPubMedGoogle Scholar
  11. 11.
    Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal adult mammalian cells. Nature 385:810PubMedGoogle Scholar
  12. 12.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedGoogle Scholar
  13. 13.
    Leor J, Gerecht S, Cohen S, Miller L, Holbova R et al (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93(10):1278–1284PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ardehali R, Ali SR, Inlay MA, Abilez OJ, Chen MQ et al (2013) Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue. Proc Natl Acad Sci U S A 110(9):3405–3410PubMedCentralPubMedGoogle Scholar
  15. 15.
    Karakikes I, Senyei GD, Hansen J, Kong CW, Azeloglu EU et al (2014) Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med 3(1):18–31PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hay DC, Zhao D, Ross A, Mandalam R, Lebkowski J et al (2007) Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells 9(1):51–62PubMedGoogle Scholar
  17. 17.
    Pal R, Mamidi MK, Das AK, Gupta PK, Bhonde R (2012) A simple and economical route to generate functional hepatocyte-like cells from hESCs and their application in evaluating alcohol induced liver damage. J Cell Biochem 113(1):19–30PubMedGoogle Scholar
  18. 18.
    Shim JH, Kim SE, Woo DH, Kim SK, Oh CH et al (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50(6):1228–1238PubMedGoogle Scholar
  19. 19.
    Bose B, Shenoy SP, Konda S, Wangikar P (2012) Human embryonic stem cell differentiation into insulin secreting β-cells for diabetes. Cell Biol Int 36(11):1013–1020PubMedGoogle Scholar
  20. 20.
    Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133PubMedGoogle Scholar
  21. 21.
    Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551PubMedCentralPubMedGoogle Scholar
  22. 22.
    Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM et al (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12(5):559–572PubMedCentralPubMedGoogle Scholar
  23. 23.
    Dausset J (1958) Iso-leuco-anticorps. Acta Haematol 20:156PubMedGoogle Scholar
  24. 24.
    Till J, McCulloch E (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–224PubMedGoogle Scholar
  25. 25.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403PubMedGoogle Scholar
  26. 26.
    Trounson AO, Gardner DK, Baker G, Barnes FL, Bongso A et al (2000) Handbook of in vitro fertilization. CRC Press, Boca Raton/London/New York/Washington, DCGoogle Scholar
  27. 27.
    Prindull G, Prindull B, Meulen N (1978) Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand 67(4):413–416PubMedGoogle Scholar
  28. 28.
    Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C et al (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50(2):147–162PubMedGoogle Scholar
  29. 29.
    Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W et al (1984) Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci 72:37–64PubMedGoogle Scholar
  30. 30.
    Andrews PW (1988) Human teratocarcinomas. Biochim Biophys Acta 948:17–36PubMedGoogle Scholar
  31. 31.
    NIH MedlinePlus Magazine. Bone Marrow Transplants: The National Marrow Donor Program and Be The Match Registry. Summer 2011. 6(2):17Google Scholar
  32. 32.
    Handyside AH, Pattinson JK, Penketh RJ, Delhanty JD, Winston RM et al (1989) Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 1(8634):347–349PubMedGoogle Scholar
  33. 33.
    Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71(6):973–985PubMedGoogle Scholar
  34. 34.
    Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848PubMedCentralPubMedGoogle Scholar
  35. 35.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedGoogle Scholar
  36. 36.
    Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield J et al (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95(23):13726–13731PubMedCentralPubMedGoogle Scholar
  37. 37.
    Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404PubMedGoogle Scholar
  38. 38.
    Tropepe V, Coles BLK, Chiasson BJ, Horsford DJ, Elia AJ et al (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2203PubMedGoogle Scholar
  39. 39.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorogenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988PubMedCentralPubMedGoogle Scholar
  40. 40.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  41. 41.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  42. 42.
    Yu J, Vodyanik MA et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedGoogle Scholar
  43. 43.
    Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedGoogle Scholar
  44. 44.
    De Coppi P, Jr Bartsch G, Minhaj Siddiqui M, Tao X, Santos CC et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106PubMedGoogle Scholar
  45. 45.
    Advanced cell technology. Human embryonic stem cells lines created without destruction of the embryos. ScienceDaily 2008Google Scholar
  46. 46.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030PubMedGoogle Scholar
  47. 47.
    Bretzner F, Gilbert F, Baylis F, Brownstone RM (2011) Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8(5):468–475PubMedGoogle Scholar
  48. 48.
    Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720PubMedGoogle Scholar
  49. 49.
    Kamao H, Mandai M, Okamoto S, Sakai N, Suga A et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:1–14Google Scholar
  50. 50.
    Yoon SH, Shim YS, Park YH, Chung JK, Nam JH et al (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25(8):2066–2073PubMedGoogle Scholar
  51. 51.
    Chernykh ER, Stupak VV, Muradov GM, Sizikov MY, Shevela EY et al (2007) Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 143(4):543–547PubMedGoogle Scholar
  52. 52.
    Cristante AF, Barros-Filho TE, Tatsui N, Mendrone A, Caldas JG et al (2009) Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 47(10):733–738PubMedGoogle Scholar
  53. 53.
    Vieira NM, Brandalise V, Zucconi E, Jazedje T, Secco M et al (2008) Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell 100(4):231–241PubMedGoogle Scholar
  54. 54.
    Bahat-Stroomza M, Barhum Y, Levy YS, Karpov O, Bulvik S et al (2009) Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J Mol Neurosci 39(1–2):199–210PubMedGoogle Scholar
  55. 55.
    González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60(4):1006–1019PubMedGoogle Scholar
  56. 56.
    Connick P, Kolappan M, Crawley C, Webber DJ, Patani R et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156PubMedCentralPubMedGoogle Scholar
  57. 57.
    Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T et al (2012) Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 30(6):1144–1151PubMedGoogle Scholar
  58. 58.
    Paracchini V, Carbone A, Colombo F, Castellani S, Mazzucchelli S et al (2012) Amniotic mesenchymal stem cells: a new source for hepatocyte-like cells and induction of CFTR expression by coculture with cystic fibrosis airway epithelial cells. J Biomed Biotechnol 2012:575471PubMedCentralPubMedGoogle Scholar
  59. 59.
    Intragumtornchai T, Jootar S, Unganon A, Swasdikul D, Udomprasertgul V (1999) Quality of life in Thai patients after bone marrow and peripheral blood stem cell transplantation: a comparison study with patients treated with conventional chemotherapy. Int J Hematol 70(3):181–189PubMedGoogle Scholar
  60. 60.
    Michallet M, Philip T, Philip I, Godinot H, Sebban C et al (2000) Transplantation with selected autologous peripheral blood CD34 + Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp Hematol 28(7):858–870PubMedGoogle Scholar
  61. 61.
    Müller AM, Kohrt HE, Cha S, Laport G, Klein J et al (2012) Long-term outcome of patients with metastatic breast cancer treated with high dose chemotherapy and transplantation of purified autologous hematopoietic stem cells. Biol Blood Marrow Transplant 18(1):125–133PubMedCentralPubMedGoogle Scholar
  62. 62.
    Wallet HL, Sobh M, Morisset S, Robin M, Fegueux N et al (2013) Double umbilical cord blood transplantation for hematological malignancies: a long-term analysis from the SFGM-TC registry. Exp Hematol 41(11):924–933PubMedGoogle Scholar
  63. 63.
    Fouillard L, Francois S, Bouchet S, Bensidhoum M, Elm’selmi A, Chapel A (2014) Innovative cell therapy in the treatment of serious adverse events related to both chemo-radiotherapy protocol and acute myeloid leukemia syndrome: the infusion of mesenchymal stem cells post-treatment reduces hematopoietic toxicity and promotes hematopoietic reconstitution. Curr Pharm Biotechnol 14(9):842–848Google Scholar
  64. 64.
    Smits AM, van Laake LW, den Ouden K, Schreurs C, Szuhai K et al (2009) Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 83(3):527–535PubMedGoogle Scholar
  65. 65.
    Okura H, Matsuyama A, Lee CM, Saga A, Kakuta-Yamamoto A et al (2010) Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng Part C Methods 16(3):417–425PubMedGoogle Scholar
  66. 66.
    Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K et al (2013) Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation 128(11 Suppl 1):S87–S94PubMedGoogle Scholar
  67. 67.
    Zhilai Z, Hui Z, Yinhai C, Zhong C, Shaoxiong M et al (2011) Combination of NEP 1-40 infusion and bone marrow-derived neurospheres transplantation inhibit glial scar formation and promote functional recovery after rat spinal cord injury. Neurol India 59(4):579–585PubMedGoogle Scholar
  68. 68.
    Drury-Stewart D, Song M, Mohamad O, Guo Y, Gu X et al (2013) Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther 4(4):93PubMedCentralPubMedGoogle Scholar
  69. 69.
    Fujiwara N, Shimizu J, Takai K, Arimitsu N, Saito A et al (2013) Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursor derived from human iPS cells. Neurosci Lett pii(13):00947-6Google Scholar
  70. 70.
    Benjamin BP, Galy A, Kyoizumi S, Namikawa R, Scarborough J et al (1994) Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice. Blood 84(8):2497–2505Google Scholar
  71. 71.
    Liu Y, Yi L, Zhang X, Gao L, Zhang C et al (2011) Cotransplantation of human umbilical cord blood derived stromal cells enhances hematopoietic reconstitution and engraftment in irradiated BABL/c mice. Cancer Biol Ther 11(1):84–94PubMedGoogle Scholar
  72. 72.
    Shi Q, Kuether EL, Chen Y, Schroeder JA, Fahs SA et al (2014) Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells. Blood 123(3):395–403PubMedGoogle Scholar
  73. 73.
    Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M et al (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp Neurol 223(1):229–237PubMedGoogle Scholar
  74. 74.
    Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in sub acute spinal cord injured patients. Clin Neurol Neurosurg 114(7):935–939PubMedGoogle Scholar
  75. 75.
    Liu J, Chen J, Liu B, Yang C, Xie D et al (2013) Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 325(1–2):127–136PubMedGoogle Scholar
  76. 76.
    Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS et al (2014) Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: Case series of 14 patients. J Spinal Cord Med 37(1):54–71PubMedGoogle Scholar
  77. 77.
    Goldman O, Han S, Sourrisseau M, Dziedzic N, Hamou W et al (2013) KDR identifies a conserved human and murine hepatic progenitor and instructs early liver development. Cell Stem Cell 12(6):748PubMedCentralPubMedGoogle Scholar
  78. 78.
    Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW et al (2014) Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int 34(1):33–41PubMedGoogle Scholar
  79. 79.
    Liao X, AnCheng JY, Zhou QJ, Liao C (2013) Therapeutic effect of autologous bone marrow-derived liver stem cells transplantation in hepatitis B virus-induced liver cirrhosis. Hepatogastroenterology 60(123):406–409PubMedGoogle Scholar
  80. 80.
    Hong J, Jin H, Han J, Hu H, Liu J et al (2014) Infusion of human umbilical cord-derived mesenchymal stem cells effectively relieves liver cirrhosis in DEN-induced rats. Mol Med Rep 9(4):1103–1111PubMedGoogle Scholar
  81. 81.
    de la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A (2013) Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis 28(3):313–323PubMedGoogle Scholar
  82. 82.
    Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA et al (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 60(6):788–798PubMedGoogle Scholar
  83. 83.
    Burt RK, Craig RM, Milanetti F, Quigley K, Gozdziak P et al (2010) Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with severe anti-TNF refractory Crohn disease: long-term follow-up. Blood 116(26):6123–6132PubMedGoogle Scholar
  84. 84.
    González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M (2000) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136(3):978–989Google Scholar
  85. 85.
    Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cells Transl Med 2(3):337, -50Google Scholar
  86. 86.
    Battista D, Ganat Y, El Maarouf A, Studer L, Rutishauser U (2014) Enhancement of polysialic acid expression improves function of embryonic stem-derived dopamine neuron grafts in Parkinsonian mice. Stem Cells Transl Med 3(1):108–113PubMedCentralPubMedGoogle Scholar
  87. 87.
    Yan M, Sun M, Zhou Y, Wang W, He Z et al (2013) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PLoS One 8(5):e64000PubMedCentralPubMedGoogle Scholar
  88. 88.
    Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31(8):1548–1562PubMedGoogle Scholar
  89. 89.
    Bae JS, Jin HK, Lee JK, Richardson JC, Carter JE (2013) Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre dementia Alzheimer’s disease. Curr Alzheimer Res 10(5):524–531PubMedGoogle Scholar
  90. 90.
    Lee HJ, Lee JK, Lee H, Shin JW, Carter JE et al (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35PubMedGoogle Scholar
  91. 91.
    Wicklund L, Leão RN, Strömberg AM, Mousavi M, Hovatta O et al (2010) Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons. PLoS One 5(12):e15600PubMedCentralPubMedGoogle Scholar
  92. 92.
    Mutirangura P, Ruangsetakit C, Wongwanit C, Chinsakchai K, Porat Y et al (2009) Enhancing limb salvage by non-mobilized peripheral blood angiogenic cell precursors therapy in patients with critical limb ischemia. J Med Assoc Thai 92(3):320–327PubMedGoogle Scholar
  93. 93.
    Kim H, Cho HJ, Kim SW, Liu B, Choi YJ et al (2010) CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 107(5):602–614PubMedCentralPubMedGoogle Scholar
  94. 94.
    Rahnemai-Azar A, D’Ippolito G, Gomez LA, Reiner T, Vazquez-Padron RI et al (2011) Human marrow-isolated adult multilineage-inducible (MIAMI) cells protect against peripheral vascular ischemia in a mouse model. Cytotherapy 13(2):179–192PubMedGoogle Scholar
  95. 95.
    Padfield GJ, Tura-Ceide O, Freyer E, Barclay GR, Turner M et al (2013) Endothelial progenitor cells, atheroma burden and clinical outcome in patients with coronary artery disease. Heart 99(11):791–798PubMedGoogle Scholar
  96. 96.
    Katare R, Riu F, Rowlinson J, Lewis A, Holden R et al (2013) Perivascular delivery of encapsulated mesenchymal stem cells improves post ischemic angiogenesis via paracrine activation of VEGF-A. Arterioscler Thromb Vasc Biol 33(8):1872–1880PubMedGoogle Scholar
  97. 97.
    Katare R, Stroemer P, Hicks C, Stevanato L, Patel S et al (2014) Clinical-grade human neural stem cells promote reparative neovascularization in mouse models of hindlimb ischemia. Arterioscler Thromb Vasc Biol 34(2):408–418PubMedGoogle Scholar
  98. 98.
    Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL (2011) Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476(7361):409–413PubMedGoogle Scholar
  99. 99.
    Lehoczky JA, Robert B, Tabin CJ (2011) Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc Natl Acad Sci U S A 108(51):20609–20614PubMedCentralPubMedGoogle Scholar
  100. 100.
    Fernando WA, Leininger E, Simkin J, Li N, Malcom CA et al (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350(2):301–310PubMedCentralPubMedGoogle Scholar
  101. 101.
    Wagner L, Lengyel L, Mikala G, Reményi P, Piros L et al (2013) Successful treatment of renal failure caused by multiple myeloma with HLA-identical living kidney and bone marrow transplantation: a case report. Transplant Proc 45(10):3705–3707PubMedGoogle Scholar
  102. 102.
    Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A et al (2013) Human embryonic stem cells differentiate into functional renal proximal tubular–like cells. Kidney Int 83:593–603PubMedGoogle Scholar
  103. 103.
    Harari-Steinberg O, Metsuyanim S, Omer D, Gnatek Y, Gershon R et al (2013) Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol Med 5(10):1556–1568PubMedCentralPubMedGoogle Scholar
  104. 104.
    Perico N, Casiraghi F, Gotti E, Introna M, Todeschini M et al (2013) Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int 26(9):867–878PubMedGoogle Scholar
  105. 105.
    Bukulmez H, Bilgin A, Caplan AI, Jones O (2014) Prevention of late stage renal failure in BXSB SLE mouse model with human bone marrow derived mesenchymal stem cell treatment. Arthritis Rheumatol 66(Suppl 11):S149Google Scholar
  106. 106.
    Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schächinger V et al (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100(10):925–934PubMedGoogle Scholar
  107. 107.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMedCentralPubMedGoogle Scholar
  108. 108.
    Jianqin Y, Boyle A, Shih H, Sievers RE, Zhang Y et al (2012) Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One 7(1):e30329Google Scholar
  109. 109.
    Martinez EC, Vu DT, Wang J, Lilyanna S, Ling LH et al (2013) Grafts enriched with sub amnion-cord-lining mesenchymal stem cell angiogenic spheroids induce post-ischemic myocardial revascularization and preserve cardiac function in failing rat hearts. Stem Cells Dev 22(23):3087–3099PubMedCentralPubMedGoogle Scholar
  110. 110.
    Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311(1):62–73PubMedGoogle Scholar
  111. 111.
    Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A et al (2012) Maturation of human embryonic stem cell–derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61(8):2016–2029PubMedCentralPubMedGoogle Scholar
  112. 112.
    Zhao Y, Jiang Z, Zhao T, Ye M, Hu C et al (2012) Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med 10:3PubMedCentralPubMedGoogle Scholar
  113. 113.
    Zhao Y, Jiang Z, Zhao T, Ye M et al (2013) Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. BMC Med 11Google Scholar
  114. 114.
    Dave SD, Trivedi HL, Chooramani SG, Chandra T (2013) Management of type 1 diabetes mellitus using in vitro autologous adipose tissue trans-differentiated insulin-making cells. BMJ Case RepGoogle Scholar
  115. 115.
    Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R (2011) Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina 31(6):1207–1214PubMedGoogle Scholar
  116. 116.
    Marchini G, Pedrotti E, Pedrotti M, Barbaro V, Di Iorio E, Ferrari S et al (2012) Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clin Experiment Ophthalmol 40(3):255–267PubMedGoogle Scholar
  117. 117.
    Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153(4):643–650PubMedGoogle Scholar
  118. 118.
    Hambright D, Park KY, Brooks M, McKay R, Swaroop A, Nasonkin IO (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936PubMedCentralPubMedGoogle Scholar
  119. 119.
    Li T, Lewallen M, Chen S, Yu W, Zhang N, Xie T (2013) Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptorcells. Cell Res 23(6):788–802PubMedCentralPubMedGoogle Scholar
  120. 120.
    Kamao H, Mandai M, Okamoto S, Sakai N, Suga A et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2(2):205–218Google Scholar
  121. 121.
    Oshima K, Shin K, Diensthuber M, Peng AW et al (2010) Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141(4):704–716.Google Scholar
  122. 122.
    Koehler KR, Mikosz AM, Molosh AI, Patel D et al (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500(7461):217–221PubMedCentralPubMedGoogle Scholar
  123. 123.
    Liu Z, Fang J, Dearman J, Zhang L, Zuo J (2014) In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic atoh1 expression. PLoS One 9(2):e89377PubMedCentralPubMedGoogle Scholar
  124. 124.
    Kobos R, Steinherz PG, Kernan NA, Prockop SE, Scaradavou A et al (2012) Allogeneic hematopoietic stem cell transplantation for pediatric patients with treatment-related myelodysplastic syndrome or acute myelogenous leukemia. Biol Blood Marrow Transplant 18(3):473–480PubMedGoogle Scholar
  125. 125.
    Hale GA, Shrestha S, Le-Rademacher J, Burns LJ, Gibson J et al (2012) Alternate donor hematopoietic cell transplantation (HCT) in non Hodgkin lymphoma using lower intensity conditioning: a report from the CIBMTR. Biol Blood Marrow Transplant 18(7):1036–1043PubMedCentralPubMedGoogle Scholar
  126. 126.
    Bhatnagar B, Rapoport AP, Fang HB, Ilyas C, Marangoz D et al (2014) Single center experience with total body irradiation and melphalan (TBI-MEL) myeloablative conditioning regimen for allogeneic stem cell transplantation (SCT) in patients with refractory hematologic malignancies. Ann Hematol 93(4):653–660PubMedGoogle Scholar
  127. 127.
    Han Q, Sun M, Wu L, Chen J, Wang W et al (2014) Primary distal femur T-cell lymphoma after allogeneic haematopoietic stem cell transplantation for chronic myeloid leukaemia: a rare case report and literature review. J Int Med Res 42(2):598–605PubMedGoogle Scholar
  128. 128.
    Cohen JB, Geyer SM, Lozanski G, Zhao W, Heerema NA et al (2014) Complete response to induction therapy in patients with Myc-positive and double-hit non-Hodgkin lymphoma is associated with prolonged progression-free survival. Cancer 120(11):1677–1685PubMedGoogle Scholar
  129. 129.
    McClune BL, Ahn KW, Wang HL, Antin JH, Artz AS et al (2014) Allotransplantation for patients age 40 years and greater with non-Hodgkin Lymphoma (NHL): encouraging progression-free survival. Biol Blood Marrow Transplant pii:S1083–S8791Google Scholar
  130. 130.
    Lee G, Papapetrou EP, Kim H, Chambers SM et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406PubMedCentralPubMedGoogle Scholar
  131. 131.
    Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O et al (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229PubMedGoogle Scholar
  132. 132.
    Boone N, Bergon A, Loriod B, Devèze A, Nguyen C et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540PubMedGoogle Scholar
  133. 133.
    Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305PubMedCentralPubMedGoogle Scholar
  134. 134.
    Xu XH, Zhong Z (2013) Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacol Sin 34:755–764PubMedCentralPubMedGoogle Scholar
  135. 135.
    Musunuru K, Domian IJ, Chien KR (2010) Stem cell models of cardiac development and disease. Annu Rev Cell Dev Biol 26:667–687PubMedCentralPubMedGoogle Scholar
  136. 136.
    Zeng X, Chen J, Deng X, Liu Y, Rao MS et al (2006) An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP + toxicity and GDNF neuroprotection. Neuropsychopharmacology 31:2708–2715PubMedCentralPubMedGoogle Scholar
  137. 137.
    Wobus AM, Löser P (2011) Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 85(2):79–117PubMedCentralPubMedGoogle Scholar
  138. 138.
    Marx U, Walles H, Hoffmann S, Lindner G, Horland R et al (2012) ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim 40(5):235–257PubMedGoogle Scholar
  139. 139.
    Kostadinova R, Boess F, Applegate D, Suter L, Weiser T et al (2013) A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol 268(1):1–16PubMedGoogle Scholar
  140. 140.
    Sciancalepore AG, Sallustio F, Girardo S, Gioia Passione L, Camposeo A et al (2014) A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS One 9(1):87496Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Indumathi Somasundaram
    • 1
  • Kanmani Anandan
    • 2
  • Dhanasekaran Marappagounder
    • 3
  1. 1.Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary ResearchD.Y. Patil UniversityKolhapurIndia
  2. 2.Technology EdMidlothianUSA
  3. 3.Stem Cell Banking & ResearchRee Laboratories Private LimitedMumbaiIndia

Personalised recommendations