Advertisement

Phytoplankton Carbon Stock

  • Abhijit Mitra
  • Sufia Zaman
Chapter

Abstract

Phytoplankton, the free-floating tiny microscopic floral particles, demonstrate a wide range of shapes and vary over several orders of magnitude in size, from submicron species such as the picoplanktonic prochlorophytes to diatoms measuring more than 1 mm in diameter. In mixed-pieces samples, high numbers of extremely small-sized species might actually contribute only a minor fraction of the overall biomass, whereas other, larger-sized species that are much less abundant in numbers might dominate the overall biomass. Thus, cell counts per se are inadequate as a measure of relative algal biomass. Several conventional biomass-related parameters, such as particulate organic carbon, ATP, or chl a, are known to vary significantly with environmental conditions, such as light and nutrient availability. Even the salinity of the aquatic system influences the biomass of phytoplankton species, although the effect is species specific.

Keywords

Dissolve Inorganic Carbon Particulate Organic Carbon Phytoplankton Species Atmospheric Carbon Dioxide Ocean Colour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aiken J, Pradhan Y, Barlow R, Lavender S, Poulton A, Holligan P, Hardman-Mountford N (2009) Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005. Deep Sea Res 56:899–917CrossRefGoogle Scholar
  2. Alvain S, Moulin C, Dandonneau Y (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res 52:1989–2004CrossRefGoogle Scholar
  3. Balch W, Holligan PM, Ackleson SG, Voss KJ (1991) Biological and optical properties of mesoscale coccolithophore blooms. Limnol Oceanogr 36:629–643CrossRefGoogle Scholar
  4. Balch W, Kilpatrick KA, Holligan PM, Trees C (1996) The 1991 coccolithophore bloom in the central north Atlantic I—optical properties and factors affecting their distribution. Limnol Oceanogr 41:1669–1683CrossRefGoogle Scholar
  5. Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In-vivo absorption properties of algal pigments. Proc Soc Photo-optical Instrum 1302:290–302Google Scholar
  6. Bishop JKB, Wood TJ (2009) Year round observations of carbon biomass and flux variability in the southern ocean. Global Biogeochem Cycles 23. doi: 10.1029/2008GB003206
  7. Cairns J Jr, Dixon KL (1971) A simple method for the biological assessment of the effects of waste discharges on aquatic bottom-dwelling organisms. J Watching Pollut Control Fed 43:755–772Google Scholar
  8. Cermeño P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG (2008) The role of nutricline depth in regulating the ocean carbon cycle. Proc Natl Acad Sci USA 105(51):20344–20349CrossRefGoogle Scholar
  9. Cullen JT, Lane TW, Morel FMM, Sherrell RM (1999) Modulation of cadmium uptake in photoplankton by seawater CO2 concentration. Nature 402:165–167CrossRefGoogle Scholar
  10. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell, OxfordGoogle Scholar
  11. Garver S, Siegel DA (1997) Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. J Geophys Res 102:18607–18625CrossRefGoogle Scholar
  12. González EJ, Matsumura-Tundisi T, Tundisi JG (2008) Size and dry weight of main zooplankton species in Bariri Reservoir (SP, Brazil). Braz J Biol 68(1):69–75CrossRefGoogle Scholar
  13. Hein M, Sand-Jensen K (1997) CO2 increases oceanic primary production. Nature 388:526–527CrossRefGoogle Scholar
  14. Hu C, Cannizzaro J, Carder KL, Muller-Karger FE, Hardy R (2010) Remote detection of Trichodesmium blooms in optically complex coastal waters: examples with MODIS full-spectral data. Remote Sens Environ 114:2048–2058CrossRefGoogle Scholar
  15. Jeffery SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1, and c 2 in higher plants, algae and natural phytoplankton. Biocheml Physiol Pflanz 167:191–194Google Scholar
  16. Lane TW, Morel FMM (2000a) Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123:345–352CrossRefGoogle Scholar
  17. Lane TW, Morel FMM (2000b) Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123:345–352CrossRefGoogle Scholar
  18. Latasa M (2007) Improving estimates of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21CrossRefGoogle Scholar
  19. Leonardos N, Richard JG (2005) Elemental and biochemical composition of Rhinomonas reticulate (Cryophyta) in relation to light and nitrate-to phosphate supply ratios. J Phycol 41(3):567–576CrossRefGoogle Scholar
  20. MacKey MD, MacKey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283CrossRefGoogle Scholar
  21. McClain C (2009) A decade of satellite ocean color observations. Annu Rev Mar Sci 1:19–42CrossRefGoogle Scholar
  22. Mitra A (2000) The northwest coast of the Bay of Bengal and deltaic Sundarbans. In: Sheppard CRC (ed) Seas at the millennium: an environmental evaluation, 145–160. Foundation of Environmental Science. Narendra Publishing House, DelhiGoogle Scholar
  23. Mitra A (2013) Sensitivity of mangrove ecosystem to changing climate. Springer, Berlin, 323 pp. ISBN: 978-81-322-1508-0Google Scholar
  24. Mitra A, Banerjee K, Gangopadhayay A (2004) Introduction to marine phytoplankton. Daya Publishing House, Delhi, 102 ppGoogle Scholar
  25. Mitra A, Zaman S, Kanti Ray S, Sinha S, Banerjee K (2012) Inter-relationship between phytoplankton cell volume and aquatic salinity in Indian Sundarbans. Natl Acad Sci Lett. doi: 10.1007/s40009-012-0083-1
  26. Moisan JR, Moisan TAH, Linkswiler MA (2011a) An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. J Geophy Res 116:1–16, C09018. doi: 10.1029/2010JC006786
  27. Moisan JR, Moisan TAH, Linkswiler MA (2011b) Estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. J Geophys Res 116:0148–0227Google Scholar
  28. Nair A, Sathyendranath S, Platt T, Morales J, Stuart V, Forget M-HE, Devred E, Bouman H (2008) Remote sensing of phytoplankton functional types. Remote Sens Environ 112:3366–3375CrossRefGoogle Scholar
  29. Osborne A, Wanielista P, Yousef A (1976) Benthic fauna species diversity in six central Florida lakes in summer. Hydrobiologia 48:125–129CrossRefGoogle Scholar
  30. Raven JA (1991) Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Can J Bot 69(5):908–924CrossRefGoogle Scholar
  31. Raven JA (1997) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27:85–209CrossRefGoogle Scholar
  32. Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251CrossRefGoogle Scholar
  33. Sabine CL, Richard AF, Nicolas G, Robert MK, Kitack L, John LB, Wanninkhof R, Wong CS, Douglas WR, Wallace BT, Frank JM, Peng T-H, Alexander K, Tsueno O, Aida FR (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  34. Sathyendranath S, Lazzara L, Prieur L (1987) Variations in the spectral values of specific absorption of phytoplankton. Limnol Oceanogr 32(2):403–415CrossRefGoogle Scholar
  35. Sathyendranath S, Watts L, Devred E (2004) Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar Ecol Prog Ser 272:59–68CrossRefGoogle Scholar
  36. Seiter K, Hensen C, Zabel M (2005) Benthic carbon mineralization on a global scale. Glob Biogeochem Cycles 19. GB1010, doi: 10.1029/2004GB002225
  37. Shannon CE, Weiner W (1949) The mathematical theory of communication. University of Illinois Press, UrbaneaGoogle Scholar
  38. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  39. Sournia A, Chrdtiennot-Dinetl MJ, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13(5):1093–1099. doi: 10.1093/plankt/13.5.1093 CrossRefGoogle Scholar
  40. Subramanian A, Carpenter EJ (1994) An empirically derived protocol for the detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery. Int J Remote Sens 158:1559–1569CrossRefGoogle Scholar
  41. Subramanian A, Carpenter EJ, Karentz PG, Falkowski PG (1999a) Optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and spectral photosynthetic characteristics. Limnol Oceanogr 44:608–617CrossRefGoogle Scholar
  42. Subramanian A, Carpenter EJ, Falkowski PG (1999b) Optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. Reflectance model for remote sensing. Limnol Oceanogr 44:618–627CrossRefGoogle Scholar
  43. Tett P, Barton ED (1995) Why are there about 5000 species of phytoplankton in the sea? J Plankton Res 17(8):1693–1704CrossRefGoogle Scholar
  44. Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45(7):1485–1500CrossRefGoogle Scholar
  45. Whittacker RH, Niering WA (1965) Vegetation of the Santa Catalina mountains, Arizona: a gradient analysis of the south slope. Ecology 46:429–452CrossRefGoogle Scholar
  46. Wilhm JL, Dorris TC (1968) Biological parameters of water quality. Bioscience 18:477–481CrossRefGoogle Scholar
  47. Zou D (2005) Effects of elevated atmospheric CO2 growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Division of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations