Skip to main content

Insect Resistance to Bacillus thuringiensis (Bt) Transgenic Crops and Its Management

  • Chapter
  • First Online:

Abstract

Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect–pest control have been successful and started paying lucrative returns to the farmers in terms of increased production due to low pest damage, savings in cost of pesticides and manpower involved for pest control. However, their efficacy shows a reducing trend due to evolution of resistance among the target pests is a significant environmental risk. Resistance is a genetically based decrease in susceptibility of a population to an insecticide. To date, field-evolved resistance to Bt crops has been documented in only three insect species: Helicoverpa zea Boddie, Spodoptera frugiperda Smith, and Busseola fusca Fuller to Bt cotton and Bt corn producing Cry1Ac, Cry1F, and Cry1Ab, respectively. Scientists in the industry, government, and academia now recognize evolution of resistance to Bt in pests as a great threat to the continued success of Bt. Insect Resistance Management (IRM) strategies begin with resistance risk assessment. Phenotypic monitoring methods are best studied for low-dose events and genic methods are best suited for high-dose events. Resistance risks are real. But they can be managed. Resistance issues are associated with first-generation technologies and incomplete or compromised IRM programs. Next generation technologies (NGS) with multiple pyramided modes of action are needed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alstad DN, Andow DA (1994) Managing the evolution of insect resistance to transgenic plants. Science 268:1894–1896

    Article  Google Scholar 

  • Altre JA, Grafius EJ, Whalon ME (1996) Feeding behavior of CryIIIA-resistant and susceptible Colorado potato beetle (Coleoptera: Chrysomelidae) larvae on Bacillus thuringiensis tenebrionis-transgenic CryIIIA-treated and untreated potato foliage. J Econ Entomol 89:311–317

    Article  CAS  Google Scholar 

  • Anderson PL, Hellmich RL (2005) Bt Corn and insect resistance management: what are they? The site specific management guideline, SSMG-33. Department of Entomology Iowa State University Ames, Iowa.

    Google Scholar 

  • Aroian RV, Griffitts JS, Huffman DL, Whitacr JL, Barrows BD, Marroquin LD, Mullers R, Brown JR, Hennet T, Esko JD (2003) Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem 278(46):45594–45602

    Article  PubMed  Google Scholar 

  • Candas M, Loseva O, Oppert B, Kosaraju P, Bulla LA (2002) Insect resistances to Bacillus thuringiensis- alterations in the Indianmeal moth larval gut proteome. Mol Cellul Proteomics 2(1):19–28

    Article  Google Scholar 

  • Estada U, Ferre J (1994) Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae) and selection for resistance to one of the crystal proteins. Appl Environ Microbiol 60(10):3840–3846

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferre J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  CAS  PubMed  Google Scholar 

  • Georghiou GJ, Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63:1095–1101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gould F, Martinez-Ramirez A, Anderson A, Ferre J, Silva FJ, Moar WJ (1992) Broad-spectrum resistance to Bt toxins in Heliothis virescens. Proc Natl Acad Sci U S A 88:7986–7990

    Article  Google Scholar 

  • Head GP, Greenplate J (2012) The design and implementation of insect resistance management programs for Bt crops. GM Crops Food 3(3):144–153

    Article  PubMed  Google Scholar 

  • Heckel DG (1994) The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci Technol 4:405–417

    Article  Google Scholar 

  • James C (2011a) Global status of commercialized biotech/GM crops. ISAAA executive report brief No 37

    Google Scholar 

  • James C (2011b) Global Status of Commercialized Biotech/GM crops. ISAAA Brief No. 43. ISAAA: Ithaca, NY

    Google Scholar 

  • Jansens S, Van Vliet C Dickburt, Buysse L, Piens C, Saey B, De Wulf A, Gossele V, Paez A, Goebel E, Peferoen M (1997) Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci 37:1616–1624

    Article  CAS  Google Scholar 

  • Kennedy GG, Whalon ME (1995) Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation. J Econ Entomol 88:454–460

    Article  Google Scholar 

  • Kranthi KR (2008) Monitoring for shifts in baseline susceptibility (development of tolerance/resistance) in the cotton bollworms (Helicoverpa armigera, and Earias vittella against Cry1A(c) toxin in various cotton growing regions of the country. Annual progress report, Central Institute of Cotton Research

    Google Scholar 

  • Kranthi KR (2012b) Bt cotton Central Institute for Cotton Research, Nagpur. Indian society for cotton improvement (isci) Mumbai, pp 1–71

    Google Scholar 

  • Lambert BL, Buysse C Decock, Jansens, Piens C, Saey B, Seurinck J, Van Audenhove K, Van Rie J, Van Vliet A, Peferoen MA (1996) Bacillus thuringiensis insecticidal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol 62:80–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lui YB, Tabashnik BE (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc R Soc Lond Ser B 264:605–610

    Article  Google Scholar 

  • Mallet J, Porter P (1992) Preventing insect adaptation to insect resistant crops: are seed or refugia the best strategy? Proc R Soc Lond Ser B 250:165–169

    Article  Google Scholar 

  • Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest management strategies. Mol Breed 1:309–317

    Article  CAS  Google Scholar 

  • Moar WJ, Pusztai-Carey M, Van Faassen H, Bosch D, Frutos R, Rang C, Luo K, Adang MJ (1995) Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol 61(6):2086–2092

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rajagopal R, Arora A, Sivakumar S, Rao NGV, Nimalkar SA, Bhatnagar RK (2009) Resistance of Helicoverpa armigera to Cry1Ac toxin from Bt is due to improper processing of the protoxin. Biochem J 419:309–316

    Article  CAS  PubMed  Google Scholar 

  • Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ (2004) Genetic and biochemical characterization of field evolved resistance to Bacillus thuringiensis toxin Cry1Ac in Diamondback moth, Plutella xylostella. Appl Environ Microbiol 70:7010–7017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Liu YB (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc R Soc Lond B 264:605–610

    Article  Google Scholar 

  • Tabashnik BE, Gould F (2004) Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J Evol Biol 17:904–912

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A 91:4120–4124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Field-evolved insect resistance to transgenic Bt crops. ISB News Report

    Google Scholar 

  • Uribe D, Martinez W, Ceron J (2003) Distribution and diversity of Cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82:119–127

    Article  CAS  PubMed  Google Scholar 

  • Yenagi BS, Patil VS, Biradar DP, Khadi BM (2010) Geographical variability in susceptibility of cotton bollworm (Helicoverpa armigera) to Bacillus thuringiensis toxin across northern Karnataka cotton ecosystem. J Ent Res 34:61–63

    Google Scholar 

  • Yu Cheng Zhu, Liu F, Xu Z, Shen J (2009) Monitoring of resistance development to Bt cotton in field populations of H. armigera. Nanjing Agricultural University, China, pp 674–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Pathak, L., Parvez, N., Patel, A., Jani, J. (2015). Insect Resistance to Bacillus thuringiensis (Bt) Transgenic Crops and Its Management. In: Chakravarthy, A. (eds) New Horizons in Insect Science: Towards Sustainable Pest Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2089-3_9

Download citation

Publish with us

Policies and ethics