Skip to main content

Abstract

The integration of new knowledge and methods of population biology, phylogenetics, and other evolutionary disciplines into taxonomy is warranted (Sites and Marshall, Trends Ecol Evol 18:462–470, 2004). The analysis and interpretation of data used to delimit species have profound implications in taxonomic research. Integrative taxonomy gives priority to species delineation over the creation of new species names. The integration of all possible taxonomic approaches abridging the gaps of each in arriving at correct species delimitation is the need of the hour in the light of biodiversity inventory. Taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. Insects, being vast and diverse on earth , need much more integrative taxonomic attention than other life systems. The unique characters of an organism that unravels the diagnostic character differences that delimit the species have to be assessed holistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler PH, Foottit RG (2009) Insect biodiversity: science and society. Blackwell Publishing Ltd, Garsington Road, Oxford, UK, pp 623. ISBN: 978-1-405-15142-9

    Google Scholar 

  • Arillo A, Engel MS (2006) Rock crawlers in Baltic amber (Notoptera: antophasmatodea). Am Mus Novit 3539:1–10

    Article  Google Scholar 

  • Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J N Am Benthol Soc 24:508–524

    Article  Google Scholar 

  • Cantino PD, de Queiroz K (2004) Phylocode: a phylogenetic code of biological nomenclature. http://www.ohiou.edu/phylocode. Accessed July 2013

  • Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematic: a thriving tower of babel. Ann Rev Entomol 45:1–54

    Article  CAS  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organisation and genetic code. J Mol Evol 22:252–271

    Article  CAS  PubMed  Google Scholar 

  • Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133:97–117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85(3):407–415

    Article  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Method and theory in comparative biology. Columbia University Press, New York, viii + 349 pp

    Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    Article  CAS  PubMed  Google Scholar 

  • Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RA, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14:3247–3266

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi DA, Engel M (2005) The evolution of insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 103:968–971

    Article  PubMed Central  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2(10):1657–1663

    Article  CAS  Google Scholar 

  • Hennig W (1966) Phylogenetic Systematics. Translated by Davis D, Zangerl R. University of Illinois Press, Urbana, Illinois, iii+263pp

    Google Scholar 

  • Hillis, David M, Moritz C, Mable BK (1996) Molecular systematics, 2nd edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Johns D (2010) The international year of biodiversity—from talk to action. Conserv Biol 24:338–340

    Article  PubMed  Google Scholar 

  • Kim CK, Byrne LB (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science. Ecol Res 21:794–810

    Article  Google Scholar 

  • Kluge NJ (2012) Cladoendesis and new look at the evolution of insect metamorphosis. Entomol Rev 92(6):622–632

    Article  Google Scholar 

  • Lee W, Kim H, Lim J, Choi H, Kim Y, Yang-Su K, Jeong-Yeon J, Foottit RG, Lee S (2011) Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. Mol Ecol Resour 11:32–37

    Article  PubMed  Google Scholar 

  • Lunt DH, Zhang DX, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5:153–165

    Article  CAS  PubMed  Google Scholar 

  • Lyal C, Paul K, Smith D, Smith R (2008) The value of taxonomy to biodiversity and agriculture. Biodiversity 9(1–2):8–13

    Article  Google Scholar 

  • Mace MG (2004) The role of taxonomy in species conservation. Phil Trans R Soc Lond B 359:711–719

    Article  Google Scholar 

  • Malhotra A, Thorpe RS (2005) Erratum to “A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers (Trimeresurus and Ovophis)”. Mol Phylogenet Evol 32:83–100

    Article  Google Scholar 

  • Marc Ereshefsky (2007) Species, taxonomy and systematics. In: Ruse M (ed) Philosophy of Biology. Prometheus Books. Amherst, New York, pp 403–428

    Google Scholar 

  • Otranto D, Stewens JR (2002) Molecular approaches to the study of myiasis causing larvae. Int J Parasitol 32:1345–1360

    Article  CAS  PubMed  Google Scholar 

  • Padial JM, Miralles A, Ignacio De la Riva, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramamurthy VV (2003) Information technology in insect biodiversity research. In: B Subramanyam, VV Ramamurthy, VS Singh (eds) Proceedings of the national symposium on frontier areas of entomological research. IARI, New Delhi

    Google Scholar 

  • Raven PH, Yeates DK (2007) Australian biodiversity: threats for the present, opportunities for the future. Aust J Entomol 46:177–187

    Article  Google Scholar 

  • Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942

    Article  PubMed  Google Scholar 

  • Roe AD, Sperling FAH (2007) Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Mol Ecol 16:3617–3633

    Article  CAS  PubMed  Google Scholar 

  • Rubinoff D (2006) DNA barcoding evolves into the familiar. Conserv Biol 20:1548–1549

    Article  PubMed  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438

    Article  CAS  PubMed  Google Scholar 

  • Singh AK (2012) Molecular taxonomy: use of modern methods in the identification of a species. Ind J Life Sci 2(1):143–147

    CAS  Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470

    Article  Google Scholar 

  • Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227

    Article  Google Scholar 

  • Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc Natl Acad Sci U S A 104(12):4967–4972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith MA, Rodriguez JJ, Whitfield JB, Andrew RD, Janzen DH, Winnie H, Hebert PDN (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci U S A 105:12359–12364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith R, Rassmann K, Davies H, King N (2011) Why.taxonomy.matters. http://www.bionet†intl.org/why. BioNET-INTERNATIONAL, Egham, UK. Accessed 25 Oct 2013

  • Stork NE (1993) How many species are there? Biodivers Conserv 2:215–232

    Article  Google Scholar 

  • Terry Sunderland (2012) http://blog.cifor.org/8746/why-taxonomy-is-important-for-biodiversity-based-science#.VG2sqjSUfSM. Accessed June 2013

  • Viraktamath CA (2003) Insect molecular systematics. In: B Subramanyam, VV Ramamurthy, VS Singh (eds) Proceedings of the national symposium on frontier areas of entomological research. IARI, New Delhi

    Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australian fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson EO (1985) The biological diversity crisis: a challenge to science. Issues Sci Technol 2:20–29

    Google Scholar 

  • Wilson EO (1988) The current state of biological diversity. In: Wilson EO, Peters FM (eds) Biodiversity. National Academy Press, Washington, DC, pp 3–18

    Google Scholar 

  • Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80

    Article  Google Scholar 

  • Wilson EO (2004) Taxonomy as a fundamental discipline. Philos Trans R Soc Lond B Biol Sci 359:739

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie L, Hong XY, Xue XF (2006) Population genetic structure of the two spotted spider mite (Acari: Tetranychidae) from China. Ann Entomol Soc Am 99:959–965

    Article  CAS  Google Scholar 

  • Yeates DK, Seago A, Nelson L, Cameron SL, Joseph L, Trueman JWH (2011) Integrative taxonomy or iterative taxonomy. Systematic Entomol 36:209–217

    Article  Google Scholar 

  • Yoder AD, Olson LE, Hanley C, Heckman KL, Rasoloarison R, Russell AL, Ranivo J, Soarimalala V, Karanth KP, Raselimanana AP, Goodman SM (2005) A multidimensional approach for detecting species patterns in Malagasy vertebrates. Proc Natl Acad Sci U S A 102:6587–6594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreedevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sreedevi, K., Meshram, N., Shashank, P. (2015). Insect Taxonomy—Basics to Barcoding. In: Chakravarthy, A. (eds) New Horizons in Insect Science: Towards Sustainable Pest Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2089-3_1

Download citation

Publish with us

Policies and ethics