Antifungal Compounds from Pseudomonads and the Study of Their Molecular Features for Disease Suppression Against Soil Borne Pathogens



The identification and biological and molecular characterization of Pseudomonas, a very versatile microbe with biocontrol potential, is of great interest for the modern and eco-compatible agriculture. The mechanisms of biocontrol by Pseudomonas include antibiotic production, siderophore production, and production of fungal cell wall-lysing enzymes and induced systemic resistance. Current genome analyses of biocontrol traits will likely lead to the development of novel tools for effective management of indigenous and inoculated pseudomonads as biocontrol agents and a better exploitation of their properties for sustainable agriculture. The chapter summarizes and discusses various studies of pseudomonads from the plant rhizosphere and their use for exploring disease management in integrated disease management (IDM) and the study of genome sequences of Pseudomonas spp. for sustainable application.


Salicylic Acid Biocontrol Agent Fluorescent Pseudomonad Siderophore Production Induce Systemic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge financial support by the Department of Science and Technology (DST), New Delhi, under Women Scientist Scheme (WOS-A).


  1. Aeron A, Dubey RC, Maheshwari DK, Pandey P, Bajpai VK, Kang SC (2011) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur J Plant Pathol 131:81–93Google Scholar
  2. Ahemad M, Khan MS (2011a) Assessment of plant growth promoting activities of rhizobacterium P. putida under insecticide stress. Microbiol J 1:54–64Google Scholar
  3. Ahemad M, Khan MS (2011b) Phosphate solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and Clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372Google Scholar
  4. Andersen JB, Koch B, Nielsen TH, Sorensen D, Hansen M, Nybroe O, Christophersen C, Sorensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:37–46PubMedGoogle Scholar
  5. Arima K, Imanaka H, Kousaka M, Fukuda A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance produced by Pseudomonas. Agric Biol Chem 28:575–576Google Scholar
  6. Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC 2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585Google Scholar
  7. Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156PubMedGoogle Scholar
  8. Ayyadurai N, Ravindra Naik P, Sreehari Rao M, Sunish Kumar R, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937PubMedGoogle Scholar
  9. Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328PubMedGoogle Scholar
  10. Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogaea L.). J Microbiol Biotechnol 18:1578–1583Google Scholar
  11. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177PubMedGoogle Scholar
  12. Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 41–76Google Scholar
  13. Botelho GR, Selecaode (2001) Pseudomonas fluorescents para controle biologic da podrado vermelha da Raiz causada for R. solani. PhD thesis, Biotechnologia Vegetal, UFRJ, Rio de Janeiro, p 108Google Scholar
  14. Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium- induced damping off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871PubMedPubMedCentralGoogle Scholar
  15. Chaudhary DK, Prakash A, Wray V, Johri BN (2009) Insights of the fluorescent pseudomonads in plant growth regulation. Curr Sci 97(2):170–179Google Scholar
  16. Chernin L, Chet I (2002) Microbial enzymes in the biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 171–226Google Scholar
  17. Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron chelating growth promoter for P. aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260PubMedPubMedCentralGoogle Scholar
  18. Crosa JH (1989) Genetics and molecular biology of siderophore mediated iron transport in bacteria. Microbiol Rev 53(4):517–530PubMedPubMedCentralGoogle Scholar
  19. de Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM (2008) Massetolide a biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–2789PubMedPubMedCentralGoogle Scholar
  20. De Werra P, Tarr MP, Keel C, Mauehofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of P. fluorescens CHAO. Appl Environ Microbiol 75:4162–4174PubMedPubMedCentralGoogle Scholar
  21. Duffy BK, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant–microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842PubMedPubMedCentralGoogle Scholar
  22. Elander RP, Mabe JA, Hamill RH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens VI production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 16:753–758PubMedPubMedCentralGoogle Scholar
  23. Frapolli M, De’fago G, Moenne-Loccoz Y (2007) Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2,4-diacetylphloroglucinol. Environ Microbiol 9:1939–1955PubMedGoogle Scholar
  24. Fravel DR (2005) Commercialization and implementation of biocontrol. Ann Rev Phytopathol 43:337–359Google Scholar
  25. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA based PCR fragments. Microb Ecol 41:369–383PubMedGoogle Scholar
  26. Gerard JR, Lloyd T, Barsby P, Haden M, Kelly T, Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60:223–229PubMedGoogle Scholar
  27. Givskov M, Östling J, Eberl L, Lindum P, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:742–745PubMedPubMedCentralGoogle Scholar
  28. Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London, pp 1008–1015Google Scholar
  29. Hammer PE, Hill DS, Lam ST, Van Pe’e KH, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63:2147–2154PubMedPubMedCentralGoogle Scholar
  30. Hammer PE, Burd W, Hill DS, Ligon JM, van Pe’e K (1999) Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains. FEMS Microbiol Lett 180:39–44PubMedGoogle Scholar
  31. Hassan MN, Afghan HS, Hafeez FY (2011) Biological control of red rot in sugarcane by native pyoluteorin- producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Manag Sci 67:1147–1154. doi: 10.1002/ps.2165 PubMedGoogle Scholar
  32. Henriksen A, Anthoni U, Nielsen TH, Sorensen J, Christophersen C, Gajhede M (2000) Cyclic lipoundecapeptide Tensin from P. fluorescens strain 96. Acta Crystallogr C 56:113–115PubMedGoogle Scholar
  33. Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290Google Scholar
  34. Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653PubMedPubMedCentralGoogle Scholar
  35. Hofte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res J Microbiol 161:464–471Google Scholar
  36. Husen E, Wahyudi AT, Suwanto A, Giyanto (2011) Growth enhancement and disease reduction of soybean by1-Aminocyclopropane-1-Carboxylate deaminase-producing Pseudomonas. Am J Appl Sci 8:1073–1080Google Scholar
  37. Jha BK, Pragash MG, Cletus J, Raman G, Sakhtivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581Google Scholar
  38. Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take all. Phytochemistry 67:595–604PubMedGoogle Scholar
  39. Kavino M, Harish S, Kumar N, Saravanakumar, Samiyappan R (2008) Induction of systemic resistance in banana (Musa spp.) against banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol 120:353–362Google Scholar
  40. Keel C, Weller DM, Natsch A, De’fago G, Cook RJ, Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62:552–563PubMedPubMedCentralGoogle Scholar
  41. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98Google Scholar
  42. Khoury WE, Makkouk K (2010) Integrated plant disease management in developing countries. J Plant Pathol 92:35–42Google Scholar
  43. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pee KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943PubMedPubMedCentralGoogle Scholar
  44. Kishore GK, Pande S, Podile AR (2006) Pseudomonas aeruginosa GSE 18 inhibits the cell wall degrading enzymes of Aspergillus niger and activates defense-related enzymes of groundnut in control of collar rot disease. Aust Plant Pathol 35:259–263Google Scholar
  45. Knowles CJ (1976) Microorganisms and cyanide. Bacteriol Rev 40:652–680PubMedPubMedCentralGoogle Scholar
  46. Koch B, Nielsen TH, Sorensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sorensen J, Nybroe O (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet exudates via the Gac two component regulatory system. Appl Environ Microbiol 68:4509–4516PubMedPubMedCentralGoogle Scholar
  47. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598Google Scholar
  48. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973PubMedGoogle Scholar
  49. Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent P. fluorescens CHA0. J Bacteriol 180:3187–3196PubMedPubMedCentralGoogle Scholar
  50. Le CN, Kruijit M, Raaijmakers JM (2011) Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. J Appl Microbiol 112:390–403PubMedGoogle Scholar
  51. Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by P. fluorescens. Phytopathology 86:149–155Google Scholar
  52. Lewis TA, Cortese MS, Sebat JL, Green TL, Lee CH, Crawford RL (2000) A Pseudomonas stutzeri gene cluster encoding biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis (thiocarboxylic acid). Environ Microbiol 2:407–416PubMedGoogle Scholar
  53. Lindum P, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) NAcyl- L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388PubMedPubMedCentralGoogle Scholar
  54. Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescent strain. Phytopathology 78:166–172Google Scholar
  55. Loper JE, Kobayashi DY, Paulsen IT (2007) The genomic sequence of Pseudomonas fluorescens Pf-5: insights into biological control. Phytopathology 97:233–238PubMedGoogle Scholar
  56. Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8(7):e1002784PubMedPubMedCentralGoogle Scholar
  57. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556Google Scholar
  58. Marahiel MA, Stacelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673PubMedGoogle Scholar
  59. Maurhofer M, Keel C, Haas D, Defago G (1994) Pyoluteorin production by Pseudomonas fluorescent strain CHAO is involved in the suppression of Pythium damping –off of cress but not cucumber. Eur J Plant Pathol 100:221–232Google Scholar
  60. Mehnaz S, Weselowski B, Aftab F, Zahid S, Lazarovits G, Iqbal J (2009) Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Can J Microbiol 55:1007–1011PubMedGoogle Scholar
  61. Mercado- Blanco J, Van der Drift LMGM, Olsson P, Thomas Oates JE, Van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicyclic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCA374. J Bacteriol 183:1909–1920PubMedPubMedCentralGoogle Scholar
  62. Meynet CE, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microb Interact 24(2):271–284Google Scholar
  63. Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43Google Scholar
  64. Nakkeeran S, Fernado WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296Google Scholar
  65. Naz I, Bano A (2010) Biochemical, molecular characterization and growth promoting effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan. Plant Soil 334:199–207Google Scholar
  66. Negi YK, Prabha D, Garg SK, Kumar J (2011) Genetic diversity among cold-tolerant fluorescent pseudomonas isolates from Indian Himalayas and their characterization for biocontrol and plant growth-promoting activities. J Plant Growth Regul 30:128–143Google Scholar
  67. Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90Google Scholar
  68. Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from P. fluorescens strain 96.578. J Appl Microbiol 89:992–1001PubMedGoogle Scholar
  69. Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M et al (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423PubMedPubMedCentralGoogle Scholar
  70. Patel D, Jha CK, Tank N, Saraf M (2011) Growth enhancement of chickpea in saline soils using plant growth promoting rhizobacteria. J Plant Growth Regul 31:53– 62. doi: 10.1007/s00344-011-9219-7 Google Scholar
  71. Pathama J, Kennedy RK, Sakthivel N (2011) Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 77–105Google Scholar
  72. Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801PubMedPubMedCentralGoogle Scholar
  73. Peix A, Ramirez-Bahena MH, Velazquez E (2009) Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 9(6):1132–1147. doi: 10.1016/j.meegid.2009.08.001 PubMedGoogle Scholar
  74. Quan Z, Su J, Jiang H, Huang X, Xu Y (2010) Optimization of phenazine-1-carboxylic acid production by a gacA/ qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology. Appl Microbiol Biotechnol 86(6):1761–1773Google Scholar
  75. Rajkumar M, Freitas H (2008) Influence of metal resistant plant growth promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842PubMedGoogle Scholar
  76. Rajkumar M, Lee KJ, Freitas H (2008) Effects of chitin and salicyclic acid on biological control of Pseudomonas spp. against damping off of pepper. S Afr J Bot 74:268–273Google Scholar
  77. Ramette A, Frapolli M, De’fago G, Moenne-Loccoz Y (2003) Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant Microbe Interact 16:525–535PubMedGoogle Scholar
  78. Ravindra Naik P, Raman G, Badri Narayanan K, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230Google Scholar
  79. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. Atroseptica. Appl Environ Microbiol 68:2261–2268PubMedPubMedCentralGoogle Scholar
  80. Renodo-Nieto M, Barret M, Morrissey J, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sanchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O’Gara F (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14:54Google Scholar
  81. Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi, Majidi E (2008) Influence of plant growth- promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am-Euras J Agric Environ Sci 3(2):253–257Google Scholar
  82. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162PubMedGoogle Scholar
  83. Saraf M, Thakker A, Patel BV (2008) Biocontrol activity of different species of pseudomonas against phytopathogenic fungi in vivo and in vitro conditions. Int J Biotechnol Biochem 4:217–226Google Scholar
  84. Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiology monographs 18. Springer, Berlin, pp 365–385Google Scholar
  85. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29PubMedGoogle Scholar
  86. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32PubMedGoogle Scholar
  87. Setubal JC, dos Santos P, Goldman BS, Ertesvag H, Espin G, Rubio LM, Valla S, Alemeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang B, Wheeler C, Zhu J, Dean DR, Dixon R, Wood D (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545PubMedPubMedCentralGoogle Scholar
  88. Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155PubMedGoogle Scholar
  89. Sharma A, Victor W, Johri B (2007) Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in Central Himalayan region. Arch Microbiol 187(4):321–335PubMedGoogle Scholar
  90. Shen L, Wang F, Yang J, Qian Y, Dong X, Zhan H (2014) Control of tobacco mosaic virus by Pseudomonas fluorescens CZ powder in greenhouses and the field. Crop Prot 56:87–90Google Scholar
  91. Siddiqui IA, Shaukat SS, Khan GH, Ali NA (2003) Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE in tomato: the influence of NaCl, oxygen and iron levels. Soil Biol Biochem 35:1625–1634Google Scholar
  92. Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SAC, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10(5):R51. doi: 10.1186/gb-2009-10-5-r51 PubMedPubMedCentralGoogle Scholar
  93. Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358PubMedGoogle Scholar
  94. Sorensen D, Nielsen TH, Christophersen C, Sorensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C 57:1123–1124PubMedGoogle Scholar
  95. Takesako K, Kuroda H, Inoue T, Haruna F, Yoshikawa Y, Kato I, Uchida K, Hiratani T, Yamaguchi H (1993) Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot 46:1414–1420PubMedGoogle Scholar
  96. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel spiked soil using PGPR. J Basic Microbiol 49:195–204PubMedGoogle Scholar
  97. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58Google Scholar
  98. Upadhyay A, Srivasatava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48:601–609PubMedGoogle Scholar
  99. van den Broek D, Bloemberg GV, Lugtenberg B (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7:1686–1697PubMedGoogle Scholar
  100. Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van T, Westende YAM, Hartog F, Van Loon LC (1977) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724Google Scholar
  101. Viswanathan R, Samiyappan R (2000) Antifungal activity of chitinases produces by some fluorescent pseudomonas against Colletotrichum falcatum causing red rot disease in sugarcane. Microbiol Res 155:1–6Google Scholar
  102. Voisard C, Keel C, Haas D, De’fago G (1989) Cyanide production by P. fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8(2):351–358PubMedPubMedCentralGoogle Scholar
  103. Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from B. subtilis. Biologicals 25(3):289–297PubMedGoogle Scholar
  104. Wahyudi AT, Astiti R, Giyanto (2011) Screening of Pseudomonas sp. isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am J Agric Biol Sci 6:134–141Google Scholar
  105. Wiyono S, Schulz DF, Wolf GA (2008) Improvement of the formulation and antagonistic activity of Pseudomonas fluorescens B5 through selective additives in the pelleting process. Biol Control 46:348–357Google Scholar
  106. Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Microbiology and Biotechnology, University School of SciencesGujarat UniversityAhmedabadIndia

Personalised recommendations