Abiotic and Biotic Plant Stress-Tolerant and Beneficial Secondary Metabolites Produced by Endophytic Bacillus Species

  • Charles W. Bacon
  • Edwin R. Palencia
  • Dorothy M. Hinton


Knowledge of endophytic bacteria and their potential for protecting crops has targeted the endophytic species of Bacillus as a valued microorganism not only for disease protection but also for inducing plant defense mechanisms. Bacillus species and their endophytic strains are also used for a wide range of antibiotics that inhibit pathogens directly impacting cellular structures or at the molecular and physiological levels. The endophytic species and strains produce fungal inhibitory compounds that belong to three broad families of lipopeptides, and these include the bacillomycins, fengycins, and surfactins. Bacilli also produce the ribosomally synthesized antimicrobial peptides, bacteriocins, which have been implemented in plant protection schemes to control fungal and bacterial diseases. Others have yet to be identified. These compounds form the basis of intense activity ranging from acute toxicity to serving as signal transduction systems for specific cellular functions, organelle formation, and responses to environmental changes and challenges. This review addresses some evidence of endophytic bacillus impacts on alleviating plant stresses, both abiotic and biotic with suggestions on future studies necessary for specific mechanisms that may assist in increasing their performance as biocontrol agents.


Biocontrol Agent Fusarium Species Endophytic Bacterium Bacillus Species Genus Bacillus 


  1. Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232PubMedCrossRefGoogle Scholar
  2. Araújo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21(8–9):1639–1645CrossRefGoogle Scholar
  3. Ashwini N, Srividya S (2013) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotech 3:1–10Google Scholar
  4. Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284CrossRefGoogle Scholar
  5. Bacon CW, Hinton DM (2011a) In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Can J Microbiol 57:485–492PubMedCrossRefGoogle Scholar
  6. Bacon CW, Hinton DM (2011b) Bacillus mojavensis: its endophytic nature, the surfactins, and their role in the plant response to infection by Fusarium verticillioides. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 21–39Google Scholar
  7. Bacon CW, Hinton DM (2014) Microbial endophytes: future challenges. In: Gange AC, Verma VC (eds) Advances in endophytic research. Springer, New York, pp 441–451CrossRefGoogle Scholar
  8. Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043PubMedPubMedCentralGoogle Scholar
  9. Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environ Heal Persp 109:325–332CrossRefGoogle Scholar
  10. Bacon CW, Hinton DM, Porter JK, Glenn AE, Kuldau GA (2004) Fusaric acid, a Fusarium verticillioides metabolite, antagonistic to the endophytic biocontrol bacterium Bacillus mojavensis. Can J Bot 82:878–885CrossRefGoogle Scholar
  11. Bacon CW, Hinton DM, Glenn AE, Macias FA, Marin D (2007) Interaction of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation products, APO. J Chem Ecol 33:1885–1897PubMedCrossRefGoogle Scholar
  12. Bacon CW, Hinton DM, Mitchell TR, Snook ME, Olubajo BA (2013) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62:1–9CrossRefGoogle Scholar
  13. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319PubMedCrossRefPubMedCentralGoogle Scholar
  14. Balhara M, Ruhil S, Dhankhar S, Chhillar AK (2011) Bioactive compounds hold up- Bacillus amyloliquefaciens as a potent bio-control agent. Nat Prod J 1:8Google Scholar
  15. Benitez L, Velho R, Lisboa M, Costa Medina L, Brandelli A (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol 48(6):791–797PubMedCrossRefGoogle Scholar
  16. Cameotra S, Makkar R (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529PubMedCrossRefGoogle Scholar
  17. Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:160–1064CrossRefGoogle Scholar
  18. De Bary A (1866) Mophololgie und physiologie pilze, flechten, und myxomyceten. Hofmeister’s Handbook of Physiol Bot Leipzig 2:1Google Scholar
  19. de Silva DM, Askwith CC, Kaplan J (1996) Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev 76(1):31–47PubMedGoogle Scholar
  20. Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34(3):189–202CrossRefGoogle Scholar
  21. Emmert EA, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171(1):1–9PubMedCrossRefGoogle Scholar
  22. Folmsbee MJ, McInerney MJ, Nagle DP (2004) Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Appl Environ Microbiol 70:5252–5257PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev 3:685–695CrossRefGoogle Scholar
  24. Galippe MLV (1887) Note sur la presence de micro-organismes dan les tissus vegetaux and filiales et associees. Comptes Rendus Hebdomodaires des Seances et Memoires de la Societe de Biologie et des ses Filales et Associees 39:410–416Google Scholar
  25. Glenn AE, Hinton DM, Yates IE, Bacon CW (2001) Detoxification of corn antimicrobial compounds as the basis for isolating Fusarium verticillioides and some other Fusarium species from corn. Appl Environ Microbiol 67:2973–2981PubMedCrossRefPubMedCentralGoogle Scholar
  26. Glenn AE, Gold SE, Bacon CW (2002) Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn. Mol Plant Microbe Interact 15:91–101PubMedCrossRefGoogle Scholar
  27. Glenn AE, Meredith FI, Morrison WHI, Bacon CW (2003) Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides. Appl Environ Microbiol 69:3165–3169PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gomaa E (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50(1):103–111PubMedCrossRefGoogle Scholar
  29. Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100(3):545–554PubMedCrossRefGoogle Scholar
  30. Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol 48(2):253–260PubMedCrossRefGoogle Scholar
  31. Hammami I, Jaouadi B, Bacha A, Rebai A, Bejar S, Nesme X, Rhouma A (2012) Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol Bioproc E 17(1):41–49CrossRefGoogle Scholar
  32. Hammerschmidt R, Dann EK (1999) The role of phytoalexins in plant protection. Novartis Found Sympos 223:188–190Google Scholar
  33. Hardoim PR, Overbeek V, Leo S, Elsas DJV (2008) Trend Microbiol 16:463–471CrossRefGoogle Scholar
  34. He L, Chen W, Liu Y (2006) Production and partial characterization of bacteriocin-like peptides by Bacillus licheniformis ZJU12. Microbiol Res 161(4):321–326PubMedCrossRefGoogle Scholar
  35. Hu HQ, Li XS, He H (2010) Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control 54(3):359–365CrossRefGoogle Scholar
  36. Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38(1):82–88PubMedCrossRefGoogle Scholar
  37. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148(7):2097–2109PubMedGoogle Scholar
  38. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59(2):171–200PubMedPubMedCentralGoogle Scholar
  39. Joshi C, Bharucha JHA, Yadav S, Nerukar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresh Technol 99:195–199CrossRefGoogle Scholar
  40. Kearns DB, Chu F, Rudner R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749PubMedCrossRefGoogle Scholar
  41. Kennedy MJ, Reader SL, Swierczynski LM (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140:2513–2529PubMedCrossRefGoogle Scholar
  42. Kim PI, Chung KC (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett 234(1):177–183PubMedCrossRefGoogle Scholar
  43. Kleerebezem M, Quadri LE, Kuiper P, de Vos WM (1997) Quorum sensing by peptide pheromones and two component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904PubMedCrossRefGoogle Scholar
  44. Kumar SN, Nambisan B (2014) Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro. Appl Biochem Biotechnol 172(2):741–754PubMedCrossRefGoogle Scholar
  45. Kumar SN, Siji JV, Nambisan B, Mohandas C (2012a) Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol 28(11):3143–3150PubMedCrossRefGoogle Scholar
  46. Kumar SN, Siji JV, Rajasekharan KN, Nambisan B, Mohandas C (2012b) Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 54(5):410–417PubMedCrossRefGoogle Scholar
  47. Lee K, Gray E, Mabood F, Jung W-J, Charles T, Clark SD, Ly A, Souleimanov A, Zhou X, Smith D (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229(4):747–755PubMedCrossRefGoogle Scholar
  48. Li H, Wang X, Han M, Zhao Z, Wang Q, Tang Q, Liu C, Kemp B, Gu Y, Shuang J (2012) Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr J Biotechnol 11:231–242Google Scholar
  49. Luo S, XuT CL, Rao C, Xiao X (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophytic Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753PubMedCrossRefGoogle Scholar
  50. Makkar RS, Cameotra SS (1998) Production of biosurfactants at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52CrossRefGoogle Scholar
  51. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434PubMedCrossRefGoogle Scholar
  52. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Micro Biotechnol 4(4):523–532CrossRefGoogle Scholar
  53. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  54. Milner JL, Stohl EA, Handelsman J (1996) Zwittermicin A resistance gene from Bacillus cereus. J Bact 178(14):4266–4272PubMedPubMedCentralGoogle Scholar
  55. Mouloud G, Daoud H, Bassem J, Laribi Atef I, Hani B (2013) New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity. Appl Biochem Biotechnol 171(8):2186–2200PubMedCrossRefGoogle Scholar
  56. Murugappan RM, Begum SB, Roobia RR (2013) Symbiotic influence of endophytic Bacillus pumilus on growth promotion and probiotic potential of the medicinal plant Ocimum sanctum. Symbiosis 60(2):91–99CrossRefGoogle Scholar
  57. Olubajo BA, Bacon CW (2008) Electrotransformation of Bacillus mojavensis with fluorescent protein markers. J Microbiol Met 74:102–105CrossRefGoogle Scholar
  58. Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  59. Ongena J, Emmanuel J, Adam A, Paquot M, Brans A, Joris B (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090PubMedCrossRefGoogle Scholar
  60. Ortiz-Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265PubMedCrossRefPubMedCentralGoogle Scholar
  61. Paul B, Chereyathmanjiyil A, Masih I, Chapuis L, Benoı̂t A (1998) Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiol Lett 165(1):65–70CrossRefGoogle Scholar
  62. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805PubMedPubMedCentralGoogle Scholar
  63. Raaijmaker JM, Bruijn I, Nybroe O, Ongena M (2010) Natural function of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062Google Scholar
  64. Rajkumar M, Sandhya S, Prasad MNV, Fretas H (2012) Perspectives of plant-associated microbes in heavy phytoremediation. Biotechnol Adv 30:1562–1574PubMedCrossRefGoogle Scholar
  65. Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69(5):M131–M134CrossRefGoogle Scholar
  66. Romero DA, Vicente A, Rakotoaly R, Dufour S, Veening J, Arrebola A (2007) The iturin and fengycin families of lipopeptides are key factor in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440PubMedCrossRefGoogle Scholar
  67. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefGoogle Scholar
  68. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33(8):1523–1538PubMedCrossRefGoogle Scholar
  70. Schalk IJ, Hannauer M, Braud A (2008) Effects of inoculation of biosurfactant-producing Bacillus sp J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22CrossRefGoogle Scholar
  71. Sgroy V, Cassan F, Masciarelli O (2009) Isolation and characterization of endophytic plant growth promoting (PGPB) or stress homeostasis-regulating bacteria assocaited to the halophyte Prosopis strombulifera. Appl Microbiol 85:371–381Google Scholar
  72. Shali A, Ghasemi S, Ahmadian G, Ranjbar G, Dehestani A, Khalesi N, Motallebi E, Vahed M (2010) Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana. Phytoparasitica 38(2):141–147CrossRefGoogle Scholar
  73. Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37(1):6–11PubMedCrossRefGoogle Scholar
  74. Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Plant Physiol Plant Mol Biol 37:473–491Google Scholar
  75. Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plant for interactions with disease-suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790PubMedCrossRefPubMedCentralGoogle Scholar
  76. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. Agric Food Chem 57:4287–4295CrossRefGoogle Scholar
  77. Srinivasan M, Holl FB, Petersen DJ (1996) Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can J Microbiol 42(10):1006–1014CrossRefGoogle Scholar
  78. Sturz AV, Christie BR (1995) Endophytic bacterial systems governing red clover growth and development. Ann Appl Biol 126:285–290CrossRefGoogle Scholar
  79. Sturz AV, Christie BR, Nowaki J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  80. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L). Can J Microbiol 53:1195–1202PubMedCrossRefGoogle Scholar
  81. Talboys P, Owen D, Healey J, Withers P, Jones D (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol 14(1):51PubMedCrossRefPubMedCentralGoogle Scholar
  82. Van Etten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell Online 6(9):1191–1192CrossRefGoogle Scholar
  83. Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14CrossRefGoogle Scholar
  84. Vendan R, Yu Y, Lee S, Rhee Y (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48(5):559–565PubMedCrossRefGoogle Scholar
  85. Vining LC (1990) Functions of secondary metabolites. Ann Rev Microbiol 44(1):395–427CrossRefGoogle Scholar
  86. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  87. Wang SL, Shih IL, Liang TW, Wang CH (2002) Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J Agric Food Chem 50(8):2241–2248PubMedCrossRefGoogle Scholar
  88. Wani PA, Kahn MS, Zaidi A (2007) Chromium reduction, plant growth promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243PubMedCrossRefGoogle Scholar
  89. Warren GF (1998) Spectacular increases in crop yields in the twentieth century. Weed Technol 12:752–760Google Scholar
  90. Willey JM, Van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Ann Rev Microbiol 61:477–501CrossRefGoogle Scholar
  91. Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420CrossRefGoogle Scholar
  92. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from Mulberry leaves. Phytopathology 91(2):181–187PubMedCrossRefGoogle Scholar
  93. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34(7):955–963CrossRefGoogle Scholar
  94. Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145CrossRefGoogle Scholar
  95. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth portion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997PubMedCrossRefGoogle Scholar
  96. Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain mq23 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 42(2):567–575PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhou Y, Choi YL, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80(4):563–572PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Charles W. Bacon
    • 1
  • Edwin R. Palencia
    • 2
  • Dorothy M. Hinton
    • 1
  1. 1.USDA, ARS, Russell Research CenterAthensUSA
  2. 2.National Peanut Research LaboratoryDawsonUSA

Personalised recommendations