Skip to main content

Plant-Endophyte Interaction and Its Unrelenting Contribution Towards Plant Health

  • Chapter
  • First Online:
Book cover Plant Microbes Symbiosis: Applied Facets

Abstract

Microbes are ubiquitous in nature; likewise, they form a part of flora in the plant species either actively colonizing or latently dormant. Beneficial plant-microbe interactions that promote plant health and development in a broad spectrum of area have been a subject of substantial study. Beneficial microbial associations like mutualists and symbiotic associates in plants show considerable promise due to the ability to provide ample benefits not only to the host plant but also a great prospect to mankind. Endophytes represent a hot spot area of current research, considering their 360 degrees of contribution and a wide range of applications in agricultural science, as potent plant growth promoters and emerging as effective biocontrol agents against various severe plant pathogens, limiting the use of chemical pesticides and other hazardous chemicals. Endophytes also share their contribution to modern medicine, industrial perspectives, nanoscience, forest management, and bioremediation. The endophytes may produce a plethora of substances or compounds with potential therapeutic applications covering plants to humans. There is increase in studies of endophytes for improving yield of food crops and the sustainable production of nonfood crops for biomass and biofuel production. The ability to tolerate both biotic and abiotic stresses is also an added advantage over the other competent microbial flora of its surrounding habitat. Indeed, endophytes are a golden area of researching and exploiting the potent functional properties that aid in understanding the depth of plant-microbe interactions and their contribution to sustainable agriculture, being the focus of concern in the present food crisis scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait Barka E, Gognies S, Nowa J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Google Scholar 

  • Aly AH, Edrada-Ebel R, Wray V, Müller WEG, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725

    PubMed  CAS  Google Scholar 

  • Athman SY, Dubois T, Coyne D, Gold C, Labuschagne N, Viljoen A (2006) Effect of endophytic Fusarium similis to tissue culture banana plants. J Nematol 38:455–460

    PubMed  PubMed Central  Google Scholar 

  • Atmosukarto I, Castillo U, Hess WM, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Sci 169:854–861

    CAS  Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1997) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:76–81

    Google Scholar 

  • Baker D, Mocek U, Garr C (2000) Natural products vs. combinatorials: a case study. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169

    PubMed  CAS  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220:67–73

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Cafeu MC, Silva GH, Teles HL, Da Bolzani VS, Araujo AR, Young MCM, Pfenning LH (2005) Antifungal compounds of Xylaria sp., an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae). Quim Nova 28:991–995

    CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL30562, endophyte on Kennedia nigriscans. Microbiology 148:2675–2685

    PubMed  CAS  Google Scholar 

  • Castillo U, Harper JK, Strobel G, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Lett 224:183–190

    CAS  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    PubMed  Google Scholar 

  • Cohen SD (2006) Host selectivity and genetic variation of Discula umbrinella isolates from two oak species: analyses of intergenic spacer region sequences of ribosomal DNA. Microb Ecol 52:463–469

    PubMed  CAS  Google Scholar 

  • De Oliveira MF, da Silva MG, Van der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Res Microbiol 161:565–572

    PubMed  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butter-worth-Heinemann, London, pp 49–80

    Google Scholar 

  • Drüge U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious roots formation in cuttings. Sci Hortic 112:422–426

    Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  PubMed Central  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupin caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Google Scholar 

  • Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    PubMed  CAS  Google Scholar 

  • Firakova S, Sturdikova M, Muckova M (2007) Bio-active secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    CAS  Google Scholar 

  • Fitches ESD, Woodhouse JP, Edwards JA, Gatehouse (2001) In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. J Insect Physiol 47:777–787

    PubMed  CAS  Google Scholar 

  • Franks A, Ryan R, Abbas A, Mark L, O’Gara F (2006) Molecular tools for studying plant growth-promoting rhizobacteria (PGPR). In: Cooper JE, Rao JR (eds) The molecular approaches to soil, rhizosphere and plant microorganisms. CABI Publishing, Wallingford, pp 116–131

    Google Scholar 

  • Gasoni L, Stegman de Gurfinkel B (1997) The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycol Res 101:867–870

    Google Scholar 

  • Goodman R, Kiraly Z, Wood KR (1986) The biochemistry and physiology of plant disease. University of Missouri Press, Columbia, pp 374–375

    Google Scholar 

  • Grewal P, Richmond D (2010) Benefits of endophytic grasses by infecting grasses, endophytes provide enhanced resistance to insects and weeds. https://www.landcareresearch.co.nz/_data/assets/pdf_file/0014/20651/wtsnew53.pdf. Accessed 24 Dec 2014

  • Guan S, Grabley S, Groth I, Lin W, Christner A, Guo D, Sattler I (2005) Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn Reson Chem 43:1028–1031

    PubMed  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bio-active natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    CAS  Google Scholar 

  • Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Anton Leeuw 81:385–395

    CAS  Google Scholar 

  • Hasegawa S, Meguro A, Toyoda K, Nishimura T, Kunoh H (2005) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. II. Acceleration of callose accumulation and lignification. Actinomycetologica 19:13–17

    CAS  Google Scholar 

  • Hollis JP (1949) Bacteria in healthy potato tissue. Phytopathol 41:350–367

    Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30

    CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2005) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Google Scholar 

  • Kim S, Shin DS, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67:448–450

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52

    Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    PubMed  CAS  Google Scholar 

  • Lamabam PS, Sarvajeet SG, Narendra T (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Google Scholar 

  • Larrainzar E, O’Gara F, Morrissey JP (2005) Applications of autofluorescent proteins for in situ studies in microbial ecology. Ann Rev Microbiol 59:257–277

    CAS  Google Scholar 

  • Lee SO, Choi GJ, Choi YH, Jang KS, Park DJ, Kim CJ, Kim JC (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746

    PubMed  CAS  Google Scholar 

  • Li WK (2005) Endophytes and natural medicines. Chin J Nat Med 3:193–199

    CAS  Google Scholar 

  • Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 23:767–770

    Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    PubMed  CAS  Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258

    PubMed  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126

    CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    CAS  Google Scholar 

  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380

    PubMed  CAS  Google Scholar 

  • Miche L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19:502–511

    PubMed  CAS  Google Scholar 

  • Miller RV, Miller CM, Garton-Kinney D, Redgrave B, Sears J, Condron M, Teplow D, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    PubMed  CAS  Google Scholar 

  • Mittermeier RA, Meyers N, Gil PR, Mittermeier CG (1999) Hotspots: Earth’s biologically richest and most endangered ecoregions. Toppan Printing Co., Japan, p 392

    Google Scholar 

  • Nassar HA, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolates of the yeast Williopsis saturnus endophytic in maize (Zea mays) roots. J Biol Fertil Soils 42:2

    Google Scholar 

  • Nejad P, Johnson (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1998) The role of chitinase of Serratia marcescens in the biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    Google Scholar 

  • Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186:4986–4993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andreas JH, Hirano SC (eds) Microbial ecology of the leaves. Springer, New York, pp 179–187

    Google Scholar 

  • Petrini O (1996) Ecological and physiological aspect of host specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St. Paul, pp 87–100

    Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312

    PubMed  Google Scholar 

  • Qi G, Lan N, Ma X, Yu Z, Zhao X (2011) Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternate agglutinin. J Appl Microbiol 110:1314–1322

    PubMed  CAS  Google Scholar 

  • Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H, Zhang AL (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19:1572–1574

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton Leeuw 81:537–547

    CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    PubMed  CAS  Google Scholar 

  • Ryu C, Farag MA, Hu C, Reddy MS, Wei H, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    PubMed  CAS  Google Scholar 

  • Silva GH, Teles HL, Trevisan HC, Bolzani VS, Young MCM, Pfenning LH, Eberlin MN, Haddad R, Costa-Neto CM, Araujo AR (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16:1463–1466

    CAS  Google Scholar 

  • Silva GH, Teles HL, Zanardi LM, Marx Young MC, Eberlin MN, Hadad R, Pfenning LH, Costa-Neto CM, Castro-Gamboa I, Bolzani YS, Araújo AR (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969

    PubMed  CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    PubMed  CAS  Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural Products. Microbiol Mol Biol Rev 67:491–502

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strobel GA, Sugawara F, Koshino H, Li JY, Harper J, Hess WM (1999) Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology 145:3557–3564

    CAS  Google Scholar 

  • Strobel GA, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung P, Chau RMW (2002) Isopestacin, a unique isobenzofuranone from Pestalotiopsis microspora possessing antifungal and antioxidant properties. Phytochemistry 60:179–183

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    PubMed  CAS  Google Scholar 

  • Swarthout D, Harper E, Judd S, Gontheir D, Shyne R, Stowe T, Bultman T (2009) Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Eviron Exp Bot 66:88–93

    Google Scholar 

  • Taghavi S, Van der Lelie D, Hoffman A, Zhang Y, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943. doi:10.1371/journal.pgen.1000943

    PubMed  PubMed Central  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CAS  Google Scholar 

  • Tombolini R, Jansson JK (1998) Monitoring of GFP-tagged bacterial cells in methods in molecular biology. In: LaRossa RA (ed) Bioluminescence methods and protocols. Humana Press Inc., Totowa, pp 285–298

    Google Scholar 

  • Toyoda H, Hashimoto H, Utsumi R, Kobayashi H, Ouchi S (1988) Detoxification of fusaric acid by a fusaric acid-resistant mutant of Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato. Phytopathology 8:1307–1311

    Google Scholar 

  • Ulrich K, Stauber T, Ewald D (2008) Paenibacillus a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93:347–351

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Varma A, Verma S, Sudah SN, Franken P (1999) Piriformospora indica, a cultivable plant growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walker MJ, Birc RG, Pemberton JM (1988) Cloning and characterization of an albicidin resistance gene from Klebsiella oxytoca. Mol Microbiol 2:443–454

    PubMed  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: Physiological and molecular considerations. Acta Hortic 560:285–292

    CAS  Google Scholar 

  • Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109:610–618

    PubMed  CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Google Scholar 

  • Wilson AD (1996) Resources and testing of endophyte-infected germplasm I national grass repository collections. In: Redlin SC, Carris LM (eds) Endophyte fungi in grasses and woody plants. APS Press, Minnesota, pp 179–195

    Google Scholar 

  • You FT, Han JZ, Wu BK, Huang LP, Qin (2009) Antifungal secondary metabolites from endophytic Verticillium sp. Syst Ecol 37:162–165

    CAS  Google Scholar 

  • Yuan Z, Zhang C, Lin FL (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126. doi:10.1007/s00344-009-9112-9

    CAS  Google Scholar 

  • Zhang LH, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci 94:9984–9989

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang HY, Wu XJ, Tang KX, Wang XD, Sun XF, Zhou KD (2003) A primary study of transferring the Pinellia ternata agglutinin (pta) gene into rice and expression. Acta Genet 30:1013–1019

    CAS  Google Scholar 

  • Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281

    PubMed  CAS  Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Google Scholar 

Download references

Acknowledgment

We thank the Department of Biotechnology, DBT, Govt. of India, for assisting financial support to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarangthem Indira Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Indira Devi, S., Momota, P. (2015). Plant-Endophyte Interaction and Its Unrelenting Contribution Towards Plant Health. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_7

Download citation

Publish with us

Policies and ethics