Advertisement

Increasing the Role of Mycorrhizal Symbiosis in Plant-Plant Facilitation Process to Improve the Productivity and Sustainability of Mediterranean Agrosystems

  • S. Wahbi
  • H. Sanguin
  • E. Tournier
  • E. Baudoin
  • T. Maghraoui
  • M. Hafidi
  • Y. Prin
  • A. Galiana
  • R. Duponnois
Chapter

Abstract

Plant-plant facilitation is an ecological process occurring in most terrestrial ecosystems. Plant-plant facilitation is considered as a positive interaction between both plant partners in which one plant species promotes the growth, survival or reproduction of the neighbouring plant. Recent studies have underlined the role of mycorrhizal fungi, i.e. arbuscular mycorrhizal fungi (AMF) and particularly extraradical hyphae of AMF, in interconnecting plants and consequently their importance in plant-plant facilitation process. Networks of AMF impact soils both physically and biologically and are considered as an important pathway for the transference of nutrients such as nitrogen and phosphorus. In parallel, AMF increase plant growth and nutrient uptake and decrease the deleterious effects of pathogens and drought. The aims of this chapter are to describe how the AMF are involved in the plant facilitation process and to assess the main mycorrhizal effects on the plant nutrition (P and N) and plant health. Also the contribution of AMF in cropping systems as well as agricultural strategies which improve AM associations in arid agrosystems will be reviewed and illustrated by experimental results from field studies in Mediterranean environment.

Keywords

Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Faba Bean Mycorrhizal Symbiosis Arbuscular Mycorrhizal Fungus Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baraza E, Zamora R, Hodar JA (2006) Conditional outcomes in plant-herbivore interactions: neighbors matter. Oikos 113:148–156CrossRefGoogle Scholar
  2. Barea JM, Azcon-Aguilar C, Azcon R (1997) Interactions between mycorrhizal fungi and rhizosphere micro-organisms within the context of sustainable soil–plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Cambridge, pp 65–77Google Scholar
  3. Barrett G, Campbell CD, Fitter AH, Hodge A (2011) The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. App Soil Ecol 48:102–105CrossRefGoogle Scholar
  4. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzofi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496CrossRefGoogle Scholar
  5. Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6R1 is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288CrossRefGoogle Scholar
  6. Bethlenfalvay GJ, Schuëpp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schuëpp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhaüser Verlag, Basel, pp 117–131CrossRefGoogle Scholar
  7. Bodker L, Kjoller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12PubMedCrossRefGoogle Scholar
  8. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  9. Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Ann Rev Ecol Syst 13:315–347CrossRefGoogle Scholar
  10. Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Dordrecht, p 415Google Scholar
  11. Camargo-Ricalde SL, Dhillion SS (2003) Endemic Mimosa species can serve as mycorrhizal “resource islands” within semi-arid communities of the Tehuacan-Cuicatlan Valley, Mexico. Mycorrhiza 13:129–136PubMedCrossRefGoogle Scholar
  12. Castillo JP, Verdu M, Valiente-Banuet A (2010) Neighborhood phylodiversity affects plant performance. Ecology 91:3656–3663PubMedCrossRefGoogle Scholar
  13. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902CrossRefGoogle Scholar
  14. Cordier C, Gianinazzi S, Gianinazzi-Pearon V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232CrossRefGoogle Scholar
  15. Dar GH, Zargar MY, Beigh GM (1997) Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 34:74–80CrossRefGoogle Scholar
  16. Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431CrossRefGoogle Scholar
  17. Ewel JJ (1999) Natural systems as models for the design of sustainable systems of land uses. Agrofor Syst 45:1–21CrossRefGoogle Scholar
  18. Fernandez-Aparicio M, Sillero JC, Rubiales D (2007) Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot 26:1166–1172CrossRefGoogle Scholar
  19. Fester T, Sawers R (2014) Progress and challenges in agricultural applications of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 30:459–470CrossRefGoogle Scholar
  20. Francis DF, Thornes JB (1990) Matorral: erosion and reclamation. In: Albaladejo J, Stocking MA, Diaz E (eds) Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 87–115Google Scholar
  21. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  22. Garcia C, Hernandez T, Roldan A, Albaladejo L (1997) Biological and biochemical quality of a semiarid soil after induced revegetation. J Environ Qual 26:1116–1122CrossRefGoogle Scholar
  23. Gianinazzi S, Gollotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  24. Gomez-Aparicio L, Zamora R, Gomez JM, Hodar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration in Mediterranean ecosystems: a meta-analysis of the use of shrubs as nurse plant. Ecol Appl 14:1128–1138CrossRefGoogle Scholar
  25. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  26. Graham JH (2000) Assessing cost of f arbuscular mycorrhizal symbiosis in agrosystems. In: Podila GK, Douds JDD (eds) Current advances in mycorrhizal research. APS Press, St. Paul, pp 127–140Google Scholar
  27. Hao Z, Fayolle L, Van Tuinen D, Gianinazzi-Pearson V, Gianinazzi S (2009) Mycorrhiza reduce development of nematode vector of Grapevine fanleaf virus in soils and root systems. In: Boudon-Padfieu E (ed) Extended abstract 16th meeting of ICVG, Dijon, pp 100–1001Google Scholar
  28. Hauggaard-Nielsen H, Jørnsgard B, Kinane J, Jensen ES (2008) Grain legume-cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agric Food Syst 23:3–12CrossRefGoogle Scholar
  29. He XH, Critchley C, Ng H, Bledsoe C (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3-Supplied as ammonium nitrate. New Phytol 167:897–912PubMedCrossRefGoogle Scholar
  30. Karagiannidis N, Bletsos F, Stavropoulos N (2002) Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic 94:145–156CrossRefGoogle Scholar
  31. Kasiamdari RS, Smith SE, Smith FA, Scott ES (2002) Influence of the mycorrhizal fungus Glomus coronatum and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil 238:235–244CrossRefGoogle Scholar
  32. Kjoller R, Rosendahl S (1996) The presence of arbuscular mycorrhizal fungus Glomus intraradices influences enzymatic activities of the root pathogen Aphanomyces euteiches in pea roots. Mycorrhiza 6:487–491Google Scholar
  33. Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and non mycorrhizal plants. New Phytol 148:163–168CrossRefGoogle Scholar
  34. Li YY, Yu CB, Cheng X, Li CJ, Sun JH, Zhang FS, Lambers H, Li L (2009) Intercropping alleviates the inhibitory effect of N fertilisation on nodulation and symbiotic N2 fixation of faba bean. Plant Soil 323:295–308CrossRefGoogle Scholar
  35. Marulanda A, Barea JM, Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678PubMedCrossRefGoogle Scholar
  36. Matsubara Y, Kayukawa Y, Yano M, Fukui H (2000) Tolerance of asparagus infected with arbuscular mycorrhizal fungus to violet root rot caused by Helicobasidium mompa. J Jpn Soc Hortic Sci 69:552–556CrossRefGoogle Scholar
  37. Matsubara Y, Hasegawa N, Fukui (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374CrossRefGoogle Scholar
  38. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedCrossRefPubMedCentralGoogle Scholar
  39. Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdu M (2012) Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytol 196:835–844PubMedCrossRefGoogle Scholar
  40. Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270CrossRefGoogle Scholar
  41. Odum EP (1959) Fundamentals of ecology. Saunders, Philadelphia, p 546Google Scholar
  42. Puerta-Pinero C, Gomez JM, Zamora R (2006) Species-specific effects on topsoil development affect Quercus ilex seedling performance. Acta Oecol 29:65–71CrossRefGoogle Scholar
  43. Puppi G, Azcon R, Hoeflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, pp 201–215CrossRefGoogle Scholar
  44. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  45. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedCrossRefPubMedCentralGoogle Scholar
  46. Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  47. Ryan MH, Norton RM, Kirkegaard JA, McCormick KM, Knights SE, Angus JF (2002) Increasing mycorrhizal colonization does not improve growth and nutrition of wheat on vertisols in south-eastern Australia. Aust J Agric Res 53:1173–1181CrossRefGoogle Scholar
  48. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, pp 145–18CrossRefGoogle Scholar
  49. Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694Google Scholar
  50. Sorensen N, Larsen J, Jakobsen I (2005) Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management in high P soils. Plant Soil 273:101–114CrossRefGoogle Scholar
  51. Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato- Meloidogyne incognita (Tylenchida, Meloidognidae) and carrot-Pratylenchus penetrans (Tylenchida, Pratylenchidae) pathosystems. Appl Entomol Zool 36:387–392CrossRefGoogle Scholar
  52. Tanaka Y, Yano K (2006) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254CrossRefGoogle Scholar
  53. Torres-Barragan A, Zavale-Tamejia E, Gonzales-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum) under field conditions. Mycorrhiza 6:253–257CrossRefGoogle Scholar
  54. Tosti G, Guidicci M (2010) Durum wheat-faba bean temporary intercropping: effects on nitrogen supply and wheat quality. Eur J Agron 33:157–165CrossRefGoogle Scholar
  55. Valiente-Banuet A, Verdu M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10:1029–1036PubMedCrossRefGoogle Scholar
  56. Valiente-Banuet A, Verdu M (2008) Temporal shifts from facilitation to competition occur between closely related taxa. J Ecol 96:489–494CrossRefGoogle Scholar
  57. Valiente-Banuet A, Vital Rumebe A, Verdu M, Callaway RM (2006) Modern quaternary plant lineages promote diversity through facilitation of ancient tertiary lineages. PNAS 103:16812–16817PubMedCrossRefPubMedCentralGoogle Scholar
  58. Van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural communities. J Ecol 97:1139–1150CrossRefGoogle Scholar
  59. Van der Heijden MGA, Klironomos JN, Ursic M, Poutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  60. Van der Putten WH (2009) A multitrophic perspective on functioning and evolution of facilitation in plant communities. J Ecol 97:1131–1138CrossRefGoogle Scholar
  61. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • S. Wahbi
    • 1
    • 2
  • H. Sanguin
    • 3
  • E. Tournier
    • 3
  • E. Baudoin
    • 4
  • T. Maghraoui
    • 5
    • 4
  • M. Hafidi
    • 1
  • Y. Prin
    • 3
  • A. Galiana
    • 3
  • R. Duponnois
    • 4
  1. 1.Laboratoire d’Ecologie et Environnement (Unité associée au CNRST, URAC 32, Unité associée au CNERS). Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco
  2. 2.IRD. UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2. Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)Campus International de BaillarguetMontpellierFrance
  3. 3.CIRAD. UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2. Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)Campus International de BaillarguetMontpellierFrance
  4. 4.IRD. UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2. Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)Campus International de BaillarguetMontpellierFrance
  5. 5.Laboratoire de Biologie et de Biotechnologie des microorganismes. Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations