Ectomycorrhizal Fungi and Their Applications

  • Antonietta Mello
  • Elisa Zampieri
  • Raffaella Balestrini


Ectomycorrhizal (ECM) fungi form association with relatively small number of plants that dominate boreal, temperate, Mediterranean, and some subtropical forest ecosystems. These plant species have been able to acquire metabolic capabilities through symbioses with ECM fungi, thus improving their mineral nutrition and growth in several ecological niches. Mycorrhizal fungi can also play several other important ecological roles, including the protection of plants from abiotic and biotic stresses. Several “targeted” metagenomic projects have been carried out, or are now in progress, in order to identify the fungal communities in soil, including ECM fungi, which are present in various habitats (e.g., forest and truffle-ground soils, etc.). ECM fungi, which are important both because of their economic value as edible fungi (i.e., truffles, boletes) and because of their application in reforestation projects, are the subject of this chapter, in which the recent advances in ECM fungal communities are reviewed, focusing mainly on the applicative aspects related to the use of these fungi.


Fruiting Body Fungal Community American Chestnut Reforestation Project Black Truffle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



EZ’s fellowship was funded by a grant from the Italian Ministry of Education, University and Research, as part of the FIRB program (Project DEFINE; grant number RBFR128ONN).


  1. Aggangan NS, Aggangan JS, Charisse J, Bulan O, Limos CAS (2012) Inoculation of Dipterocarps Anisoptera thurifera and Shorea guiso with ectomycorrhizal fungi in Philippine red soil. Philipp J Sci 141:229–241Google Scholar
  2. Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:426–436PubMedCrossRefGoogle Scholar
  3. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545PubMedCrossRefGoogle Scholar
  4. Balestrini R, Bianciotto V, Bonfante P (2012) Mycorrhizae. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences: properties and processes, vol 24, 2nd edn. CRC Press, Boca Raton, pp 29–39Google Scholar
  5. Balestrini R, Ghignone S, Sillo F (2013) The contribution of new technologies toward understanding plant–fungus symbioses. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 201–214CrossRefGoogle Scholar
  6. Bauman JM, Keiffer CH, Hiremath S, McCarthy BC (2013) Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentate establishment in coal mine restoration. J Appl Ecol 50:721–729CrossRefGoogle Scholar
  7. Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI, Fontana G, Kauserud H (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897–1908PubMedCrossRefGoogle Scholar
  8. Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Høiland K, Eidesen PB (2014) Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 23:649–659PubMedCrossRefGoogle Scholar
  9. Bonfante P (2010) Plant-fungal interactions in mycorrhizas. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons Ltd, ChichesterGoogle Scholar
  10. Bovi M, Carrizo ME, Capaldi S, Perduca M, Chiarelli LR, Galliano M, Monaco HL (2011) Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology 21:1000–1009PubMedCrossRefGoogle Scholar
  11. Bradford MA (2014) Ecology: good dirt with good friends. Nature 505:486–487PubMedCrossRefGoogle Scholar
  12. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  13. Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In: Dhal NK, Sahu SC (eds) Plant science. Intech, Janeza Trdine, p 107Google Scholar
  14. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soil reveal an unexpected high fungal. New Phytol 184:449–456PubMedCrossRefGoogle Scholar
  15. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278PubMedCrossRefGoogle Scholar
  16. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618PubMedCrossRefGoogle Scholar
  17. Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562CrossRefGoogle Scholar
  18. Danielsen L, Polle A (2014) Poplar nutrition under drought as affected by ectomycorrhizal colonization. Environ Exp Bot 108:89–98Google Scholar
  19. Danielsen L, Thürmer A, Meinicke P, Buée M, Morin E, Martin F, Pilate G, Daniel R, Polle A, Reich M (2012) Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2:1935–1948PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ding X, Tang J, Cao M, Guo CX, Zhang X, Zhong J, Zhang J, Sun Q, Feng S, Yang ZR, Zhao J (2010) Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake. Int J Biol Macromol 47:271–275PubMedCrossRefGoogle Scholar
  21. Dosskey MG, Boersma L, Linderman RG (1991) Role of photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol 117:327–334CrossRefGoogle Scholar
  22. Duñabeitia MK, Hormilla S, Garcia-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14:11–18PubMedCrossRefGoogle Scholar
  23. Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133–142CrossRefGoogle Scholar
  24. Epron D, Ngao J, Dannoura M, Bakker MR, Zeller B, Bazot S, Bosc A, Plain C, Lata JC, Priault P, Barthes L, Loustau D (2011) Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees. Biogeosciences 8:1153–1168CrossRefGoogle Scholar
  25. Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant. New Phytol 201:951–960PubMedCrossRefGoogle Scholar
  26. Gausterer C, Penker M, Krisai-Greilhuber I, Stein C, Stimpfl T (2014) Rapid genetic detection of ingested Amanita phalloides. Forensic Sci Int Genet 9:66–71PubMedCrossRefGoogle Scholar
  27. Girlanda M, Perotto S, Bonfante P (2007) Mycorrhizal fungi: their habitats and nutritional strategies biology of the fungal cell. In: Howard RJ, Gow NAR (eds) The Mycota IV, 2nd edn. Springer, BerlinGoogle Scholar
  28. Gittel A, Bárta J, Kohoutová I, Mikutta R, Owens S, Gilbert J, Schnecker J, Wild B, Hannisdal B, Maerz J, Lashchinskiy N, Capek P, Santruková H, Gentsch N, Shibistova O, Guggenberger G, Richter A, Torsvik VL, Schleper C, Urich T (2013) Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J 8:841–853PubMedCrossRefGoogle Scholar
  29. Guidot A, Debaud JC, Marmeisse R (2002) Spatial distribution of the below-ground mycelia of an ectomycorrhizal fungus inferred from specific quantification of its DNA in soil samples. FEMS Microbiol Ecol 42:477–486PubMedCrossRefGoogle Scholar
  30. Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869PubMedCrossRefGoogle Scholar
  31. Helbling A, Bonadies N, Brander KA, Pichler WJ (2002) Boletus edulis: a digestion-resistant allergen may be relevant for food allergy. Clin Exp Allergy 32:771–775PubMedCrossRefGoogle Scholar
  32. Heleno SA, Barros L, Sousa MJ, Martins A, Santos-Buelga C, Ferreira ICFR (2011) Targeted metabolites analysis in wild Boletus species. LWT Food Sci Technol 44:1343–1348CrossRefGoogle Scholar
  33. Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382PubMedCrossRefGoogle Scholar
  34. Högberg P, Högberg MN, Gottlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Nasholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228PubMedGoogle Scholar
  35. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871PubMedCrossRefGoogle Scholar
  36. Hui N, Jumpponen A, Niskanen T, Liimatainen K, Jones KL, Koivula T, Romantschuk M, Strömmer R (2011) ECM fungal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiol Ecol 76:121–132PubMedCrossRefGoogle Scholar
  37. Jarvis S, Woodward S, Alexander IJ, Taylor AF (2013) Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine. Glob Chang Biol 19:1688–1696PubMedCrossRefGoogle Scholar
  38. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  39. Johnson D, Martin F, Cairney JW, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 19:614–628CrossRefGoogle Scholar
  40. Jourand P, Hannibal L, Majorel C, Mengant S, Ducousso M, Lebrun M (2014) Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. J Plant Physiol 171:164–172PubMedCrossRefGoogle Scholar
  41. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448PubMedCrossRefGoogle Scholar
  42. Kennedy PG, Peay KG (2007) Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291:155–165CrossRefGoogle Scholar
  43. Khosla B, Reddy MS (2008) Response of ectomycorrhizal fungi on the growth and mineral nutrition of Eucalyptus seedlings in bauxite mined soil. Am-Eurasian J Agric Environ Sci 3:123–126Google Scholar
  44. Kim JY, Byeon SE, Lee YG, Lee JY, Park J, Hong EK, Cho JY (2008) Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J Microbiol Biotechnol 18:95–103PubMedGoogle Scholar
  45. Kim M, Yoon H, You YH, Kim YE, Woo JR, Seo Y, Lee GM, Kim YJ, Kong WS, Kim JG (2013) Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J Microbiol Biotechnol 23:1347–1356PubMedCrossRefGoogle Scholar
  46. Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–472PubMedCrossRefGoogle Scholar
  47. Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228PubMedCrossRefGoogle Scholar
  48. Kipfer T, Wohlgemuth T, van der Heijden MG, Ghazoul J, Egli S (2012) Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi. PLoS ONE 7:e35275PubMedCrossRefPubMedCentralGoogle Scholar
  49. Koharudin LMI, Viscomi AR, Jee J-G, Ottonello S, Gronenborn AM (2008) The evolutionarily conserved family of Cyanovirin-N homologs: structures and carbohydrate specificity. Structure 16:570–584PubMedCrossRefGoogle Scholar
  50. Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55CrossRefGoogle Scholar
  51. Le Tacon F, Zeller B, Plain C, Hossann C, Bréchet C, Robin C (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLoS ONE 8:e64626PubMedCrossRefPubMedCentralGoogle Scholar
  52. Leake JR, Ostle NJ, Rangel-Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl Soil Ecol 33:152–175CrossRefGoogle Scholar
  53. Lothamer K, Brown SP, Mattox JD, Jumpponen A (2013) Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape. Mycorrhiza 24:267–280PubMedCrossRefGoogle Scholar
  54. Marmeisse R, Nehls U, Opik M, Selosse MA, Pringle A (2013) Bridging mycorrhizal genomics, metagenomics and forest ecology. New Phytol 198:343–346PubMedCrossRefGoogle Scholar
  55. Martin F, Bonito G (2012) Ten years of genomics for ectomycorrhizal fungi: what have we achieved and where are we heading? In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms, vol 34, Soil biology. Springer, Berlin/Heidelberg, pp 383–401CrossRefGoogle Scholar
  56. Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515PubMedCrossRefGoogle Scholar
  57. Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  58. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038PubMedCrossRefGoogle Scholar
  59. McGuire KL, Allison SD, Fierer N, Treseder KK (2013) Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS ONE 8:e68278PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mello A (2012) State of the art of the research on Boletus edulis. In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms: current knowledge and future prospects, vol 34, Soil biology. Springer, Berlin, p 73CrossRefGoogle Scholar
  61. Mello A, Ghignone S, Vizzini A, Sechi C, Ruiu P, Bonfante P (2006a) ITS primers for the identification of marketable Boletes. J Biotechnol 121:318–329PubMedCrossRefGoogle Scholar
  62. Mello A, Murat C, Bonfante P (2006b) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8PubMedCrossRefGoogle Scholar
  63. Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P (2011) ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia 103:1184–1193PubMedCrossRefGoogle Scholar
  64. Mello A, Ding GC, Piceno YM, Napoli C, Tom LM, DeSantis TZ, Andersen GL, Smalla K, Bonfante P (2013) Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS ONE 8:e61945PubMedCrossRefPubMedCentralGoogle Scholar
  65. Morte A, Díaz G, Rodríguez P, Alarcón JJ, Sánchez-Blanco MJ (2001) Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in response to drought. Biol Plant 44:263–267CrossRefGoogle Scholar
  66. Napoli C, Mello A, Borra A, Vizzini A, Sourzat P, Bonfante P (2010) Tuber melanosporum, when dominant, affects fungal dynamics in truffle-grounds. New Phytol 185:237–247PubMedCrossRefGoogle Scholar
  67. Nehls U, Mikolajewski S, Magel E, Hampp R (2001) Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol 150:533–541CrossRefGoogle Scholar
  68. Nguyen C, Todorovic C, Robin C, Christophe A, Guckert A (1999) Continuous monitoring of rhizosphere respiration after labelling of plant shoots with 14CO2. Plant Soil 212:189–199CrossRefGoogle Scholar
  69. Norton JM, Smith JL, Firestone MK (1990) Carbon flow in the rhizosphere of Ponderosa pine seedlings. Soil Biol Biochem 22:449–455CrossRefGoogle Scholar
  70. Ohnuma N, Amemiya K, Kakuda R, Yaoita Y, Machida K, Kikuchi M (2000) Sterol constituents from two edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chem Pharm Bull (Tokyo) 48:749–751CrossRefGoogle Scholar
  71. Oliveira RS, Franco AR, Vosátka M, Castro PML (2010) Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis 52:125–131CrossRefGoogle Scholar
  72. Oliveira RS, Franco AR, Castro PML (2012) Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecol Eng 43:95–103CrossRefGoogle Scholar
  73. Orgiazzi A, Bianciotto V, Bonfante P, Daghino S, Ghignone S, Lazzari A, Lumini E, Mello A, Napoli C, Perotto S, Vizzini A, Bagella S, Murat C, Girlanda M (2013) 454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity 5:73–98CrossRefGoogle Scholar
  74. Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J 8:321–330PubMedCrossRefGoogle Scholar
  75. Percudani R, Montanini B, Ottonello S (2005) The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins 60:670–678Google Scholar
  76. Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini C, Persiani AM, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G, Selosse MA (2013) Interactions of fungi with other organisms. Plant Biosyst 147:208–218CrossRefGoogle Scholar
  77. Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458PubMedCrossRefGoogle Scholar
  78. Peter M, Ayer F, Egli S (2001) Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and belowground ectomycorrhizal species composition. New Phytol 149:311–325CrossRefGoogle Scholar
  79. Plain C, Gerant D, Maillard P, Dannoura M, Dong Y, Zeller B, Priault P, Parent F, Epron D (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiol 29:1433–1445PubMedCrossRefGoogle Scholar
  80. Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22PubMedCrossRefGoogle Scholar
  81. Reddell P, Gordon V, Hopkins MS (1999) Ectomycorrhizas in Eucalyptus tetrodonta and E. miniata forest communities in tropical Northern Australia and their role in the rehabilitation of these forests following mining. Aust J Bot 47:881–907CrossRefGoogle Scholar
  82. Rizzello R, Zampieri E, Vizzini A, Autino A, Cresti M, Bonfante P, Mello A (2012) Authentication of prized white and black truffles in processed products using quantitative real-time PCR. Food Res Int 48:792–797CrossRefGoogle Scholar
  83. Robin C, Vaillant V, Vansuyt G, Zinsou C (1990) Assimilate partitioning in Pachyrhizus erosus L. during long-day vegetative development. Plant Physiol Biochem 28:343–349Google Scholar
  84. Simard SW, Durall DM, Jones MD (1997) Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13C pulse-labeling method. Plant Soil 191:41–55CrossRefGoogle Scholar
  85. Singer R (1986) The agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein, p 981Google Scholar
  86. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  87. Sousa NR, Franco AR, Oliveira RS, Castro PML (2012) Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. J Environ Manag 95:S269–S274CrossRefGoogle Scholar
  88. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699PubMedCrossRefGoogle Scholar
  89. Subke JA, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytol 183:349–357PubMedCrossRefGoogle Scholar
  90. Tedersoo L, May TW, Smith ME (2010a) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263PubMedCrossRefGoogle Scholar
  91. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010b) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301PubMedCrossRefGoogle Scholar
  92. Teramoto M, Wu B, Hogetsu T (2012) Transfer of 14C-photosynthate to the sporocarp of an ectomycorrhizal fungus Laccaria amethystina. Mycorrhiza 22:219–225PubMedCrossRefGoogle Scholar
  93. Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K (2013) Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol Evol 3:1281–1293PubMedCrossRefPubMedCentralGoogle Scholar
  94. Tschaplinski TJ, Plett JM, Engle N, Deveau A, Cushman K, Martin MZ, Doktycz MJ, Tuskan G, Brun A, Kohler A, Martin FM (2014) Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol Plant Microbe Interact 6:546–556CrossRefGoogle Scholar
  95. Valdés M, Asbjornsen H, Gómez-Cárdenas M, Juárez M, Vogt KA (2006) Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza 16:117–124PubMedCrossRefGoogle Scholar
  96. Voříšková J, Brabcová V, Cajthaml T, Baldrian P (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201:269–278PubMedCrossRefGoogle Scholar
  97. Walker JK, Cohen H, Higgins LM, Kennedy PG (2013) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol 202:287–296Google Scholar
  98. Walker JKM, Phillips LA, Jones MD (2014) Ectomycorrhizal fungal hyphae communities vary more along a pH and nitrogen gradient than between decayed wood and mineral soil microsites. Botany 92:453–463Google Scholar
  99. Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134PubMedCrossRefGoogle Scholar
  100. Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A (2010) Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground. FEMS Microbiol Ecol 71:43–49PubMedCrossRefGoogle Scholar
  101. Zawirska-Wojtasiak R (2004) Optical purity of (R)-(−)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chem 86:113–118CrossRefGoogle Scholar
  102. Zhang HH, Tang M, Chen H, Zheng CL (2010) Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings. Eur J Soil Biol 46:55–61CrossRefGoogle Scholar
  103. Zhang A, Xiao N, He P, Sun P (2011) Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis. Int J Biol Macromol 49:1092–1095PubMedCrossRefGoogle Scholar
  104. Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579:5157–5162PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Antonietta Mello
    • 1
  • Elisa Zampieri
    • 2
  • Raffaella Balestrini
    • 1
  1. 1.Istituto per la Protezione Sostenibile delle Piante del CNR, c/o Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi di TorinoTorinoItaly
  2. 2.Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA)Università degli Studi di TorinoGrugliasco (Torino)Italy

Personalised recommendations