Advertisement

Legume Root Exudates: Their Role in Symbiotic Interactions

  • David L. Biate
  • Annu Kumari
  • K. Annapurna
  • Lakkineni Vithal Kumar
  • D. Ramadoss
  • Kiran K. Reddy
  • Satish Naik
Chapter

Abstract

Legumes are in constant dynamic interactions with rhizobia and arbuscular mycorrhizal (AM) fungi which mutually benefit the partners. Legumes provide the carbon energy to the microbes, and they in turn provide the nutrients such as nitrogen and phosphorus. The growth of these symbionts largely depends on the secretions of the legume roots which include both high and low molecular weight compounds. These molecules also act as cues in plant-microbe signaling and recognition. A cascade of reactions take place between the legume and the microbe before specific refined symbiotic partnership manifests mutually benefiting both the partners. Here, we provide an overview of the functions of legume root exudates with emphasis on the interactions between legume and rhizobia.

Keywords

Arbuscular Mycorrhizal Root Exudate Mycorrhizal Symbiosis Surface Polysaccharide Symbiotic Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The first author is grateful to the Department of Biotechnology, Govt. of India, for the DBT-RA fellowship.

References

  1. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76PubMedGoogle Scholar
  2. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals in fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931PubMedPubMedCentralGoogle Scholar
  3. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351PubMedGoogle Scholar
  4. Antolin-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50:451–473PubMedGoogle Scholar
  5. Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488Google Scholar
  6. Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X (2004) Characterization of NopP, a Type III secreted effector of Rhizobium sp. Strain NGR234. J Bacteriol 186:4774–4780PubMedPubMedCentralGoogle Scholar
  7. Badri DV, Weirl TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650PubMedGoogle Scholar
  8. Bartsev A, Kobayashi H, Broughton WJ (2004) Rhizobial signals convert pathogens to symbionts at the legume interface. In: Gillings M, Holmes A (eds) Plant microbiology. Garland Science⁄BIOS Scientific Publishers, Abingdon, pp 19–31Google Scholar
  9. Bassam BJ, Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1988) Identification of a nodD dependent locus in the Rhizobium strain NGR234 activated by phenolic factors secreted by soybeans and other legumes. Mol Plant-Microbe Interact 1:161–168PubMedGoogle Scholar
  10. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 68:1260–1264Google Scholar
  11. Benfey PN, Scheres B (2000) Root development. Curr Biol 16:813–815Google Scholar
  12. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:226Google Scholar
  13. Besserer A, Bécard G, Jauneau A, Roux C, Séjalon- Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413PubMedPubMedCentralGoogle Scholar
  14. Besserer A, Becard G, Roux C, Se’jalon-Delmas N (2009) Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signal Behav 4:75–77PubMedPubMedCentralGoogle Scholar
  15. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedGoogle Scholar
  16. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535PubMedPubMedCentralGoogle Scholar
  17. Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698PubMedGoogle Scholar
  18. Chabot S, Bel-Rhlid R, Chênevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoids compounds under CO2-enriched conditions. New Phytol 122:461–467Google Scholar
  19. Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF (2005) Modulating DNA bending affects NodD mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 33:2540–2548PubMedPubMedCentralGoogle Scholar
  20. Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 17:4–199Google Scholar
  21. Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365PubMedGoogle Scholar
  22. D’Arcy-Lameta A, Jay M (1987) Study of soybean and lentil root exudates. III. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant Soil 101:267–72Google Scholar
  23. D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12(6):79–105Google Scholar
  24. Dakora FD (2000) Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust J Plant Physiol 27:885–892Google Scholar
  25. Dastmalchi M, Dhaubhadel S (2014) Soybean seed isoflavonoids: biosynthesis and regulation. Phytochemicals – biosynthesis, function and application. Recent Adv Phytochem 44:1–21Google Scholar
  26. Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638Google Scholar
  27. de Lyra MCCP, Lo’pez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny MR, Cubo MT, Bellogı’n RA, Ruiz-Sainz JE, Ollero FJ (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9:125–133Google Scholar
  28. de Maagd RA, Wijfjes AH, Spaink HP, Ruiz-Sainz JE, Wijffelman CA, Okker RJ, Lugtenberg BJ (1989) NodO, a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1JI, encodes a secreted protein. J Bacteriol 171:6764–6770PubMedPubMedCentralGoogle Scholar
  29. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320PubMedGoogle Scholar
  30. Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedGoogle Scholar
  31. Dixon RA, Harrison MJ, Paiva NL (1995) The isoflavonoid phytoalexin pathway: from enzymes to genes to transcription factors. Physiol Plant 93:385–392Google Scholar
  32. Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179PubMedPubMedCentralGoogle Scholar
  33. Enkerli J, Bhatt G, Covert SF (1998) Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. Mol Plant Microbe Interact 11:317–326Google Scholar
  34. Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72Google Scholar
  35. Ferrer JL, Austin MB, Stewart C, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370PubMedPubMedCentralGoogle Scholar
  36. Fisher RF, Long SR (1992) Rhizobium–plant signal exchange. Nature 387:655–660Google Scholar
  37. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081PubMedGoogle Scholar
  38. Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87PubMedGoogle Scholar
  39. Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380PubMedGoogle Scholar
  40. Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587–593Google Scholar
  41. Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709Google Scholar
  42. Gomez-Roldan V, Roux C, Girard D, Bécard G, Puech V (2007) Strigolactones: promising plant signals. Plant Signal Behav 2:163–164PubMedPubMedCentralGoogle Scholar
  43. Graham TL (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95:594–603PubMedPubMedCentralGoogle Scholar
  44. Gu M, Chen A, Dai X, Liu W, Xu G (2011) How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant Signal Behav 6:1300–1304PubMedPubMedCentralGoogle Scholar
  45. Gutjahr C, Parniske M (2013) Cell and developmental biology of Arbuscular Mycorrhiza Symbiosis. Annu Rev Cell Dev Biol 29:593–617PubMedGoogle Scholar
  46. Harrison MJ (2009) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42Google Scholar
  47. Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti. Plant Physiol 92:116–122PubMedPubMedCentralGoogle Scholar
  48. Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590PubMedGoogle Scholar
  49. He J, Ruan Y, Straney D (1996) Analysis of determinants of binding and transcriptional activation of the pisatin-responsive DNA binding factor of Nectria haematococca. Mol Plant Microbe Interact 9:171–179PubMedGoogle Scholar
  50. Heinz EB, Phillips DA, Streit WR (1999) BioS, a biotin- induced, stationary phase, and possible LysR-type regulator in Sinorhizobium meliloti. Mol Plant Microbe Interact 12:803–812PubMedGoogle Scholar
  51. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113PubMedGoogle Scholar
  52. Hiltner L (1904) Uber neure erfahrungen und probleme auf dem Gebiet der Boden-bakteriologie und unter besondere Berucksichtigung der grundungung und Bracke. Arb DLG 98:59–78Google Scholar
  53. Hungria M, Joseph CM, Phillips DA (1991) Anthocyanidins and flavonols, major nod gene Inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97:751–758PubMedPubMedCentralGoogle Scholar
  54. Hutsch BW, Augustin J, Merbach W (2000) Plant rhizodeposition an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407Google Scholar
  55. Kamst E, Spaink HP, Kafetzopoulos D (1998) Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. In: Biswas BB, Das HK (eds) Plant-microbe interactions-subcellular biochemistry. Plenum Press, New York, pp 29–71Google Scholar
  56. Kang J, Parka J, Choia H, Burlab B, Kretzschmarb T, Leea Y, Martinoiaa E (2011) Plant ABC transporters. The Arabidopsis book 9: e0153. http://dx.doi.org/10.1199/tab.0153
  57. Kannenberg EL, Perzl M, Ha¨rtner T (1995) The occurrence of hopanoid lipids in Bradyrhizobium bacteria. FEMS Microbiol Lett 127:255–262Google Scholar
  58. Koltai H, Kapulnik Y (2011) Strigolactones as mediators of plant growth responses to environmental conditions. Plant Signal Behav 6:37–41PubMedPubMedCentralGoogle Scholar
  59. Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci U S A 84:7428–7432PubMedPubMedCentralGoogle Scholar
  60. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedPubMedCentralGoogle Scholar
  61. Krause A, Doerfel A, Go¨ttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235PubMedGoogle Scholar
  62. Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M, Pueppke SG (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16:617–625PubMedGoogle Scholar
  63. Larose G, Chenevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339Google Scholar
  64. Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 99:14446–14451PubMedPubMedCentralGoogle Scholar
  65. Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354PubMedGoogle Scholar
  66. Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58PubMedGoogle Scholar
  67. Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889Google Scholar
  68. Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants. Nature 364:247–249Google Scholar
  69. Martinoia E, Klein M, Bovet L, Forestier C, Kolukisaoglu Ü, Műller-Rover B, Schulz B (2002) Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta 214:345–355PubMedGoogle Scholar
  70. Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Ano’lles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc Natl Acad Sci U S A 100:1444–1449PubMedPubMedCentralGoogle Scholar
  71. Matiru VN, Dakora FD (2005) Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. New Phytol 165:847–855PubMedGoogle Scholar
  72. Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedPubMedCentralGoogle Scholar
  73. Messens E, Geelen D, van Montagu M, Holsters M (1991) 7,4-Dihydroxyflavanone is the major Azorhizobium nod gene-inducing factor present in Sesbania rostrata seedling exudate. Mol Plant-Microbe Interact 4:262–267Google Scholar
  74. Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions and their potential role in biological control. Plant Soil 185:241–251Google Scholar
  75. Morandi D, Branzanti B, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364Google Scholar
  76. Moscatiello R, Squartini A, Mariani P, Navazio L (2010) Flavonoid-induced calcium signaling in Rhizobium leguminosarum bv. Viciae. New Phytol 188:814–823PubMedGoogle Scholar
  77. Nagahashi G, Douds DD (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115:351358Google Scholar
  78. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396Google Scholar
  79. Okazaki S, Zehner S, Hempel J, Lang K, Gottfert M (2009) Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295:88–95PubMedGoogle Scholar
  80. Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S (2010) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol Plant Microbe Interact 23:223–234PubMedGoogle Scholar
  81. Parke D (1997) Acquisition, reorganization, and merger of genes: novel management of the beta-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol Lett 146:3–12Google Scholar
  82. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedPubMedCentralGoogle Scholar
  83. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980PubMedGoogle Scholar
  84. Phillips DA, Joseph CM, Yang GP, Martı’nez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci U S A 96:12275–12280PubMedPubMedCentralGoogle Scholar
  85. Poulin MJ, Bel-Rhlid R, Piché Y, Chênevert R (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 19:2317–2327PubMedGoogle Scholar
  86. Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12(4):293–318PubMedGoogle Scholar
  87. Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signaling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626PubMedGoogle Scholar
  88. Rao JR, Cooper JE (1994) Rhizobia catabolise nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413PubMedPubMedCentralGoogle Scholar
  89. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843PubMedPubMedCentralGoogle Scholar
  90. Scervino JM, Ponce MA, Erra-Bassels R, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922Google Scholar
  91. Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11:316–321Google Scholar
  92. Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385Google Scholar
  93. Srivastava P, Sharma PK, Dogra RC (1999) Inducers of nod genes of Rhizobium ciceri. Microbiol Res 154:49–55PubMedGoogle Scholar
  94. Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton, p 298Google Scholar
  95. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules 12:1290–1306PubMedGoogle Scholar
  96. Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338PubMedGoogle Scholar
  97. Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285PubMedGoogle Scholar
  98. Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008PubMedPubMedCentralGoogle Scholar
  99. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323PubMedGoogle Scholar
  100. Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. Strain NGR234. Mol Plant Microbe Interact 17:1153–1161PubMedGoogle Scholar
  101. Umehara M (2011) Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnol 28:429–437Google Scholar
  102. Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer Academic/Plenum Press, New York, pp 23–39Google Scholar
  103. Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y (1998) Flavonoids and arbuscular-mycorrhizal fungi. In: Buslig BS, Manthey JA (eds) Flavonoids in the living system. Plenum Press, New York, pp 9–33Google Scholar
  104. Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389PubMedGoogle Scholar
  105. Vlassak KM, Luyten E, Verreth C, van Rhijn P, Bisseling T, Vanderleyden J (1998) The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol Plant Microbe Interact 11:383–392Google Scholar
  106. Wang X (2010) Structural studies and mechanisms of isoflavonoid biosynthesis. In: Thompson MJ (ed) Isoflavones biosynthesis, occurrence and health effects. Nova Publishers, New York, pp 239–254Google Scholar
  107. Wang B, Qui YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedGoogle Scholar
  108. Wasmannm CC, Van Etten HD (1996) Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Mol Plant Microbe Interact 9:793–803Google Scholar
  109. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629PubMedPubMedCentralGoogle Scholar
  110. Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97Google Scholar
  111. Winkel SB (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493Google Scholar
  112. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117PubMedGoogle Scholar
  113. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207PubMedPubMedCentralGoogle Scholar
  114. Zaat SAJ, Schripsema J, Wijffelman CA, Brussel AAN, Lugtenberg BJJ (1989) Analysis of the major inducers of the Rhizobium nodA promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol Biol 13:175–188PubMedGoogle Scholar
  115. Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751PubMedPubMedCentralGoogle Scholar
  116. Zuanazzi J, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe Interact 11:784–794Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • David L. Biate
    • 1
  • Annu Kumari
    • 1
  • K. Annapurna
    • 1
  • Lakkineni Vithal Kumar
    • 1
  • D. Ramadoss
    • 1
  • Kiran K. Reddy
    • 1
  • Satish Naik
    • 1
  1. 1.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations