Pseudomonads: Plant Growth Promotion and Beyond

  • Govindan Selvakumar
  • Periyasamy Panneerselvam
  • Gurupadam Hema Bindu
  • Arakalagud Nanjundaiah Ganeshamurthy


Members of the genus Pseudomonas are a ubiquitous and important component of the soil and rhizospheric ecosystems, where they play multifarious roles such as the recycling of organic matter, promotion of plant growth, alleviation of abiotic stress effects in plants, and degradation of xenobiotic compounds. The versatility and ecological fitness of this genus has been often attributed to its metabolic versatility and its ability to produce antagonistic molecules, thereby gaining a niche advantage in the rhizosphere. This chapter attempts to briefly explore the historical evolution of this genus and explore the various facets of Pseudomonads, which confer upon them a distinct edge over other soil microbes. The utility of Pseudomonads both within and beyond the realm of plant growth promotion, in the agro and related ecosystems, is also discussed in brief.


Root Colonization Plant Growth Promotion Xenobiotic Compound Metabolic Versatility Opportunistic Human Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams PA (1987) Alternative models of character displacement and niche shift 2. Displacement when there is competition for a single resource. Am Nat 130:271–282Google Scholar
  2. Ahemad M, Khan MS (2012a) Alleviation of fungicide-induced phytotoxicity in green gram Vigna radiata (L.) Wilczek using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459PubMedPubMedCentralGoogle Scholar
  3. Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950PubMedGoogle Scholar
  4. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedGoogle Scholar
  5. Aislabie J, Lloyd-Jones G (1995) A review of bacterial degradation of pesticides. Aust J Soil Res 33:925–942Google Scholar
  6. Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55Google Scholar
  7. Ali SZ, Sandhya V, Grover M, Rao LV, Venkateswarlu B (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6:239–246Google Scholar
  8. Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64(2):493–502Google Scholar
  9. Aoki MK, Uehara K, Koseki K, Tsuji M, Iijima K, Ono T, Samejima (1991) An antimicrobial substance produced by Pseudomonas cepacia B5 against the bacterial wilt disease pathogen Pseudomonas solanacearum. Agric Biol Chem 55:715–722Google Scholar
  10. Ayres JC (1960) The relationship of organisms of the genus Pseudomonas to the spoilage of meat, poultry and eggs. J Appl Bacteriol 23:471–486Google Scholar
  11. Bano N, Musarrat J (2003) Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance. Lett Appl Microbiol 36:349–353PubMedGoogle Scholar
  12. Barbiere P, Bestetti G, Reniero D, Galli E (1996) Mercury resistance in aromatic compound degrading Pseudomonas strains. FEMS Microb Ecol 20:185–194Google Scholar
  13. Behki RM, Khan US (1986) Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem 34:746–749Google Scholar
  14. Behrendt U, Ulrich A, Schumann P, Meyer JM, Spröer C (2007) Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57:979–985PubMedGoogle Scholar
  15. Behrendt U, Schumann P, Meyer JM, Ulrich A (2009) Pseudomonas cedrina subsp. fulgida subsp. nov., a fluorescent bacterium isolated from the phyllosphere of grasses. Int J Syst Evol Microbiol 59:1331–1335PubMedGoogle Scholar
  16. Beijerinck MW (1921) Beobachtungen und Betrachtungen uber Wurzelknospen und Nebenwurzeln. Verz Geschr Beijer 2:7–121Google Scholar
  17. Bell G (1997) Selection: the mechanism of evolution. Springer, BerlinGoogle Scholar
  18. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 1–442Google Scholar
  19. Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert ecosystems. Curr Sci 1:91–100Google Scholar
  20. Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr (VI) from chromate-bearing cooling tower effluent. Biotechnol Lett 18:667Google Scholar
  21. Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root-associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch Microbiol 195:605–615PubMedGoogle Scholar
  22. Braud A, Je’ze’quel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286PubMedGoogle Scholar
  23. Cámara B, Strömpl C, Verbarg S, Spröer C, Pieper DH, Tindall BJ (2007) Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 57:923–931PubMedGoogle Scholar
  24. Canstein HV, Li Y, Timmis KN, Deckwer WD, Timmis KN, Deckwer WD, Wagner-Döbler I (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284Google Scholar
  25. Chang JS, Hong J (2004) Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnol Bioeng 44:999–1006Google Scholar
  26. Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R, 3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075PubMedGoogle Scholar
  27. Damodaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Sah V, Sharma DK (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584Google Scholar
  28. Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345PubMedGoogle Scholar
  29. De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866Google Scholar
  30. De Leo PC, Ehrlich HL (1994) Reduction of hexavalent chromium by Pseudomonas fluorescens LB 300 in batch and continuous cultures. Appl Microbiol Biotechnol 40:756Google Scholar
  31. De Weger LA, Van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonisation of potato roots. J Bacteriol 169:2769–2773PubMedPubMedCentralGoogle Scholar
  32. De Weger LA, Van Loosdrecht MC, Klaassen HE, Lugtenberg BJJ (1989) Mutational changes in physiochemical cell surface properties of plant-growth-stimulating Pseudomonas spp. do not influence the attachment properties of the cells. J Bacteriol 171:2756–2761PubMedPubMedCentralGoogle Scholar
  33. Dekkers LC, Bloemendaal CJP, deWeger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998) A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56PubMedGoogle Scholar
  34. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria soil. Biol Biochem 40:74–84Google Scholar
  35. Dhillon JK, Shivaraman N (1999) Biodegradation of cyanide compounds by a Pseudomonas species (S1). Can J Microbiol 45:201–208PubMedGoogle Scholar
  36. Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 9:130–138Google Scholar
  37. Dörr J, Hurek T, Reinhold Hurek HB (1998) Type IV pili are involved in plant–microbe and fungus–microbe interactions. Mol Microbiol 30:7–17PubMedGoogle Scholar
  38. Doudoroff M, Palleroni NJ (1974) Genus I: Pseudomonas Migula 1984, 237 Nom. cons. Opin. 5, Jud. Comm. 1952, 121. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 217–243Google Scholar
  39. Favero MS, Carson LA, Bond WW, Petersen NJ (1971) Pseudomonas aeruginosa: growth in distilled water from hospitals. Science 173:836–838PubMedGoogle Scholar
  40. Feng Z, Zhang J, Huang X, Zhang J, Chen M, Li S (2012) Pseudomonas zeshuii sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 62:2608–2612PubMedGoogle Scholar
  41. Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediat J 5:225–246Google Scholar
  42. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. Academic, New YorkGoogle Scholar
  43. Furuya NY, Kushima K, Tsuchiya K (1991) Protection of tomato by pretreatment with Pseudomonas glumae from infection with Pseudomonas solanacearum and its mechanisms. Ann Phytopathol Soc Jpn 57:363–370Google Scholar
  44. Gause GF (1934) The struggle for existence. Williams & Wilkins, BaltimoreGoogle Scholar
  45. Goldman RC, Leive L (1980) Heterogeneity in antigenic side chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2. Eur J Biochem 107:145–153PubMedGoogle Scholar
  46. Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446PubMedGoogle Scholar
  47. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240Google Scholar
  48. Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385–388PubMedGoogle Scholar
  49. Gupta SK, Kumari R, Prakash O, Lal R (2008) Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 58:1339–1345PubMedGoogle Scholar
  50. Guttman DS, Morgan RL, Wang PW (2008) The evolution of the Pseudomonads. In: Fatmi M, Collmer A, Iacobellis NS, Mansfield JW, Murillo J, Schaad NW, Ullrich M (eds) Pseudomonas syringae pathovars and related pathogens–identification, epidemiology and genomics. Springer, Dordrecht, pp 307–319Google Scholar
  51. Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa review. Gene 192:99–108PubMedGoogle Scholar
  52. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1997PubMedGoogle Scholar
  53. Hartman GL, Hong W, Hayward AC (1992) Potential of biological and chemical control of bacterial wilt. In: Hartman GL, Hayward AC (eds) Bacterial wilt. ACIAR, Canberra, pp 322–326Google Scholar
  54. Haubold B, Rainey PB (1996) Genetic and ecotypic structure of a fluorescent Pseudomonas population. Mol Ecol 5:747–761Google Scholar
  55. Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take all. Phytopathology 77:286–292Google Scholar
  56. Hu MZC, Reeves M (1997) Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnol Prog 13:60–70Google Scholar
  57. Hussein H, Moawad H, Farag S (2004) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J Biotechnol 7:13Google Scholar
  58. Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L, Bouchier C, Zhukova NV, Russell J, Elena C, Kiprianova A (2009) Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int J Syst Evol Microbiol 59:2476–2481PubMedGoogle Scholar
  59. Jagadeesh KS, Kulkarni JH, Krishnaraj PU (2001) Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr Sci 81:882–889Google Scholar
  60. Judith EM, De Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, Van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188Google Scholar
  61. Kazy SK, Sar P, Sen AK, Singh SP, D’Souza SF (2002) Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 18:583–588Google Scholar
  62. Kazy SK, Das SK, Sar P (2006) Lanthanum biosorption by a Pseudomonas sp: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol 33:773–783PubMedGoogle Scholar
  63. Kazy SK, Sar P, D’Souza SF (2008) Studies on uranium removal by the extra cellular polysaccharide of a Pseudomonas aeruginosa strain. Bioremediat J 12:47–57Google Scholar
  64. Khan NH, Ishii Y, Kimata-Kino N, Esaki H, Nishino T, Nishimura M, Kogure K (2007) Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb Ecol 53:173–186PubMedGoogle Scholar
  65. Kiewitz C, Tummler B (2000) Sequence diversity of Pseudomonas aeruginosa impact on population structure and genome evolution. J Bacteriol 182:3125–3135PubMedPubMedCentralGoogle Scholar
  66. Kloepper JW (1983) Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and daughter tubers. Phytopathology 73:217–219Google Scholar
  67. Kohler J, Hernandez JA, Caravaca F, Roldàn A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151Google Scholar
  68. Kohler J, Caravaca F, Roldán A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434Google Scholar
  69. Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 14:1096–1104PubMedGoogle Scholar
  70. Kuntz DA, Nagappan O, Avalos JS, Delong GT (1992) Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 58:2022–2029Google Scholar
  71. Lakshmi CV, Prakash NT (2009) In situ bioremediation of chlorpyrifos in cotton fields: possible role of plant-microbe interaction. J Pure Appl Microbiol 3:543–550Google Scholar
  72. Lakshmi Rani N, Lalitha Kumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 40:1000–1006Google Scholar
  73. Lawongsa P, Boonkerd N, Wongkaew S, O’Gara F, Teaumroong N (2008) Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World J Microb Biotechnol 24:1877–1884Google Scholar
  74. Lessie TG, Phibbs PVJ (1984) Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38:359–388PubMedGoogle Scholar
  75. Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria on asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394PubMedGoogle Scholar
  76. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Young CC (2013) Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. Int J Syst Evol Microbiol 63:3168–3174PubMedGoogle Scholar
  77. Loper JE, Hassan KA, Mavrodi DV, Davis EWII, Lim CK (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. doi: 10.1371/journal.pgen.1002784 PubMedPubMedCentralGoogle Scholar
  78. López JR, Diéguez AL, Doce A, De la Roca E, De la Herran R, Navas JI, Romalde JL (2012) Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int J Syst Evol Microbiol 62:874–882PubMedGoogle Scholar
  79. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490PubMedGoogle Scholar
  80. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedGoogle Scholar
  81. Madhuri RJ, Rangaswamy V (2009) Biodegradation of selected insecticides by Bacillus and Pseudomonas sps in ground nut fields. Toxicol Int 16:127–132Google Scholar
  82. Matthysse AG, McMahan S (1998) Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 64:2341–2345PubMedPubMedCentralGoogle Scholar
  83. McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076PubMedPubMedCentralGoogle Scholar
  84. Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni N (2002) Siderophore typing, a powerful tool for the identification of fluorescent and non-fluorescent Pseudomonas. Appl Environ Microbiol 68:2745–2753PubMedPubMedCentralGoogle Scholar
  85. Meyer AF, Lipson DA, Martin AP, Schadt CW, Schmidt SK (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70:483–489PubMedPubMedCentralGoogle Scholar
  86. Migula W (1894) U¨ber ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238Google Scholar
  87. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Kundu S, Bisht JK, Gupta HS (2008) Characterization of a psychrotrophic plant growth promoting Pseudomonas PGERS 17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:1–8Google Scholar
  88. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313PubMedGoogle Scholar
  89. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Bisht JK, Bhatt JC (2011) Alleviation of cold stress effects in wheat (Triticum aestivum L.) seedlings by application of psychrotolerant pseudomonads from N.W. Himalayas. Arch Microbiol 193:497–513PubMedGoogle Scholar
  90. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Bisht JK, Gupta HS (2012) Co-inoculation of Rhizobium leguminosarum PR-1 with a cold tolerant Pseudomonas sp improves iron acquisition, nutrient uptake and growth of field pea. J Plant Nutr 35:243–256Google Scholar
  91. Mistry K, Desai C, Patel K (2009) Reduction of chromium (VI) by bacterial strain KK15 isolated from contaminated soil. J Cell Tissue Res 9:1821Google Scholar
  92. Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530PubMedGoogle Scholar
  93. Nagashetti V, Mahadevaraju GK, Muralidhar TS, Javed A, Trivedi D, Bhusa KP (2013) Biosorption of heavy metals from soil by Pseudomonas aeruginosa. Int J Innov Technol Explor Eng 2:22–24Google Scholar
  94. Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ−HCH degradation by Pseudomonas strains. Bioresour Technol 88:41–46PubMedGoogle Scholar
  95. O’brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627Google Scholar
  96. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461PubMedGoogle Scholar
  97. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–344PubMedGoogle Scholar
  98. Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hyper mutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253PubMedGoogle Scholar
  99. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2, 4, 6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750PubMedPubMedCentralGoogle Scholar
  100. Palleroni NJ (1984) Pseudomonas, Topley and Wilson’s microbiology and microbial infections. Hodder Arnold, LondonGoogle Scholar
  101. Palleroni NJ (2005) Genus I. Pseudomonas Migula. In: Brenner DJ, Krieg NR, Staley JT, Garitty GT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 323–379, 2(2)Google Scholar
  102. Palleroni NJ (2008) The road to the taxonomy of Pseudomonas. In: Pseudomonas: genomics and molecular biology. Caister Academic Press, Norfolk, pp 1–18Google Scholar
  103. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339Google Scholar
  104. Palumbo J, Kado C, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113PubMedPubMedCentralGoogle Scholar
  105. Panicker G, Aislabie J, Saul D, Bej A (2002) Cold tolerance of Pseudomonas sp. 30/3 isolated from oil-contaminated soil. Antarct Polar Biol 225:5–11Google Scholar
  106. Park YD, Yi H, Baik KS, Seong CN, Bae KS, Moon EY, Chun J (2006) Pseudomonas segetis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2593–2595PubMedGoogle Scholar
  107. Paul D, Dinesh Kumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374Google Scholar
  108. Phillips DA, Streit W (1995) Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization. In: Stacey G, Keen NT (eds) Plant-microbe interactions. Chapman & Hall, New York, pp 236–271Google Scholar
  109. Piotrowska-Seget Z, Cycon M, Kozdrój J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246Google Scholar
  110. Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777PubMedGoogle Scholar
  111. Poornima K, Karthik L, Swadhini SP, Mythili S, Sathiavelu A (2010) Degradation of chromium by using a novel strains of Pseudomonas species. J Microb Biochem Technol 2:95–99Google Scholar
  112. Praveen Kumar G, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol. doi: 10.1155/2014/1959465946 Google Scholar
  113. Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth‐promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014PubMedGoogle Scholar
  114. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547PubMedGoogle Scholar
  115. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72PubMedGoogle Scholar
  116. Rainey PB, Buckling A, Kassen R, Travisano M (2000) The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol 15:243–247PubMedGoogle Scholar
  117. Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498PubMedGoogle Scholar
  118. Ramos E, Ramírez-Bahena MH, Valverde A, Velázquez E, Zúñiga D, Velezmoro C, Peix A (2013) Pseudomonas punonensis sp. nov., isolated from straw. Int J Syst Evol Microbiol 63:1834–1839PubMedGoogle Scholar
  119. Ramphal R, Small PM, Shands JW Jr, Fischlschweiger W, Small PA Jr (1980) Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect Immun 27:614–619PubMedPubMedCentralGoogle Scholar
  120. Rangeshwaran R, Ashwitha K, Sivakumar G, Jalali SK (2013) Analysis of proteins expressed by an abiotic stress tolerant Pseudomonas putida (NBAII-RPF9) isolate under saline and high temperature conditions. Curr Microbiol 67:659–667PubMedGoogle Scholar
  121. Rathinasabapathi B, Raman SB, Kertulis G, Ma L (2006) Arsenic resistant proteobacterium from the phyllosphere of arsenic hyper accumulating fern (Pteris vittata (L.) reduces arsenate to arsenite. Can J Microbiol 52:695–700PubMedGoogle Scholar
  122. Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603PubMedGoogle Scholar
  123. Rokade KB, Mali GV (2013) Optimization of soil parameters for benzyl benzoate degradation by Pseudomonas desmolyticum NCIM 2112. Res J Agric Sci 1(5):1–9Google Scholar
  124. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272Google Scholar
  125. Sandhya V, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26Google Scholar
  126. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30Google Scholar
  127. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292PubMedGoogle Scholar
  128. Saravanakumar D, Vijayakumar C, Kumar BN, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565Google Scholar
  129. Sarkar S, Sathesh Kumar A, Jayanthi R, Premkumar R (2011) Biodegradation of Fenpropathrin by Pseudomonas sp. isolated from tea rhizosphere microflora. Adv Biotechnol 10:6–9Google Scholar
  130. Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009a) Mountain aspect influences the genetic glustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438PubMedGoogle Scholar
  131. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2009b) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245Google Scholar
  132. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135Google Scholar
  133. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362Google Scholar
  134. Sesma A, Sundin GW, Murillo J (2000) Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Microbiology 146:2375–2384PubMedGoogle Scholar
  135. Shakya S, Pradhan B, Smith L, Tuladhar S, Shrestha J (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surface water and groundwater of Rautahat District, Nepal. J Environ Manag 95:S250–S255Google Scholar
  136. Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SVS (2011) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in central India. J Microbiol Biotechnol 21:1127–1142PubMedGoogle Scholar
  137. Silby MW, Cerden˜o-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51PubMedPubMedCentralGoogle Scholar
  138. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680PubMedGoogle Scholar
  139. Silver S (1996) Bacterial resistances to toxic metal ions – a review. Gene 179:9–19PubMedGoogle Scholar
  140. Simons M, Van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonisation by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607PubMedGoogle Scholar
  141. Simons M, Permentier HP, De Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 10:102–106Google Scholar
  142. Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60PubMedGoogle Scholar
  143. Siva GV, Rajam A (2013) Degradation of endosulfan using Pseudomonas sp. ED1 isolated from pesticide contaminated soil. J Acad India Res 2:170Google Scholar
  144. Spiers AJ, Buckling A, Rainey P (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350PubMedGoogle Scholar
  145. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic Pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedGoogle Scholar
  146. Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338PubMedGoogle Scholar
  147. Tamer MAT, Medhat AH, Naggar EL (2013) Malathion degradation by soil isolated bacteria and detection of degradation products by GC-MS. Int J Environ Sci 3:1467–1476Google Scholar
  148. Tao Y, Zhou Y, He X, Hu X, Li D (2014) Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int J Syst Evol Microbiol 64:95–100PubMedGoogle Scholar
  149. Thomas CM (2000) The horizontal gene pool. Harwood Academic Publishers, AmsterdamGoogle Scholar
  150. Toro M, Ramírez-Bahena MH, Cuesta MJ, Velázquez E, Peix A (2013) Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 63:4413–4420PubMedGoogle Scholar
  151. Tourkya B, Boubellouta T, Dufour E, Leriche F (2009) Fluorescence spectroscopy as a promising tool for a polyphasic approach to Pseudomonad taxonomy. Curr Microbiol 58:39–46PubMedGoogle Scholar
  152. Tvrzová L, Schumann P, Spröer C, Sedláček I, Páčová Z, Šedo O, Zdráhal Z, Steffen M, Lang E (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 56:2657–2663PubMedGoogle Scholar
  153. Unnamalai N, Gnanamanickam SS (1984) Pseudomonas fluorescens is an antagonist to Xanthomonas citri (Hasse) dye, the incitant of citrus canker. Curr Sci 53:703–704Google Scholar
  154. Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001) Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica 29:155–166Google Scholar
  155. Wang LT, Tai CJ, Wu YC, Chen YB, Lee FL, Wang SL (2010) Pseudomonas taiwanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:2094–2098PubMedGoogle Scholar
  156. Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287Google Scholar
  157. Whitby JL, Rampling A (1972) Pseudomonas aeruginosa contamination in domestic and hospital environment. Lancet 1:15–17PubMedGoogle Scholar
  158. Wilson M, Lindow SE (1993) Effect of phenotypic plasticity on epiphytic survival and colonization by Pseudomonas syringae. Appl Environ Microbiol 59:410–416PubMedPubMedCentralGoogle Scholar
  159. Winogradsky S (1949) Microbiologie du Sol. Problèmes et Méthodes: Cinquante Ans de Recherches. Masson et Cie, Paris, p 863Google Scholar
  160. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326PubMedGoogle Scholar
  161. Xie F, Ma H, Quan S, Liu D, Chen G, Chao Y, Qian S (2014) Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine. Int J Syst Evol Microbiol 64:559–564PubMedGoogle Scholar
  162. Xu GW, Gross DC (1986) Field evaluations of the interactions among fluorescent pseudomonads, Erwinia carotovora and potato yields. Phytopathology 76:423–430Google Scholar
  163. Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73Google Scholar
  164. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394PubMedGoogle Scholar
  165. Yao K, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54Google Scholar
  166. Zhang DC, Hong CL, Zhou YG, Schinner F, Margesin R (2011) Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2333–2337PubMedGoogle Scholar
  167. Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394PubMedGoogle Scholar
  168. Zinniel DK, Lambrecht P, Harris BN (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Govindan Selvakumar
    • 1
  • Periyasamy Panneerselvam
    • 1
  • Gurupadam Hema Bindu
    • 1
  • Arakalagud Nanjundaiah Ganeshamurthy
    • 1
  1. 1.Indian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations