Skip to main content

Rhizosphere Bacteria for Crop Production and Improvement of Stress Tolerance: Mechanisms of Action, Applications, and Future Prospects

  • Chapter
  • First Online:

Abstract

Rhizosphere bacteria associated with plant roots can enhance crop productivity through a number of direct and indirect mechanisms. These beneficial bacteria attracted the scientists around the globe due to their significant contribution to mitigate adverse effects of environmental stresses on plants. These plant growth-promoting rhizobacteria (PGPR) have the potential to improve crop production under stress conditions solely and/or in combination with other microbes. The use of PGPR as co-inoculants with symbiotic bacteria is a potential biotechnological approach to promote nodulation for improving crop biomass and soil health. Multi-strain bacterial consortia are also proved useful for enhancing plant growth and development particularly in conditions where single inoculation was not so effective. The objectives of present review are to highlight the basic mechanisms used by such bacteria in general and the applied aspects of these bacteria for improving plant stress tolerance and ultimately crop productivity particularly. Certain examples highlighting their significant role for enhancing plant growth under biotic and abiotic stress conditions have been reviewed. The role of PGPR for improving nodulation when used with nitrogen-fixing bacteria has been discussed. The potential of genetically engineered rhizobacteria that possess the required trait necessary under certain environmental conditions has also been evaluated. The areas that need further research and future perspectives of this technology have been discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Azeem SAM, Elwan MWM, Sung JK, Ok YS (2012) Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Commun Soil Sci Plant Anal 43:1303–1315

    CAS  Google Scholar 

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth–promoting rhizobacteria on improved crop production: prospects for developing economies. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 45–63

    Google Scholar 

  • Aguirrezabal L, Bouchier–Combaud S, Radziejwoski A, Dauzat M, Cookson SJ, Granier C (2006) Plasticity to soil water deficit in Arabidopsis thaliana: dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes. Plant Cell Environ 29:2216–2227

    PubMed  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with Rhizobium and PGPR containing ACC deaminase. Can J Microbiol 57:578–589

    PubMed  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt–stressed conditions. Ann Microbiol 62:1321–1330

    CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013a) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt–affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    PubMed  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Nadeem SM, Nazli F, Jamil M, Khalid M (2013b) Field evaluation of Rhizobium and Pseudomonas strains to improve growth, nodulation and yield of mung bean under salt-affected conditions. Soil Environ 32:158–165

    Google Scholar 

  • Ahmad M, Zahir ZA, Jamil M, Nazli F, Latif M, Akhtar MF (2014) Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt–affected conditions. Pak J Bot 46:375–382

    Google Scholar 

  • Ait Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth–promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    PubMed  PubMed Central  Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate–solubilizing bacteria on yield of sorghum (Sorghum bicolor L. Moench) in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Amein T, Omer Z, Welch C (2008) Application and evaluation of Pseudomonas strains for biocontrol of wheat seedling blight. Crop Prot 27:532–536

    Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2001) Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. J Oil Palm Res 13:42–49

    CAS  Google Scholar 

  • Andrades-Moreno L, del Castillo I, Parra R, Doukkali B, Redondo-Gómez S, Pérez-Palacios P, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2014) Prospecting metal–resistant plant–growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut Res 21:3713–3721

    CAS  Google Scholar 

  • Annapurna K, Ramadoss D, Vithal L, Bose P, Sajad A (2011) PGPR bioinoculants for ameliorating biotic and abiotic stresses in crop production. In: Proceedings of the 2nd Asian PGPR conference, Beijing, pp 67–72

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth–promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Arkhipchenko IA, Salkinoja-Salonen MS, Karyakina JN, Tsitko I (2005) Study of three fertilizers produced from farm waste. Appl Soil Ecol 30:126–132

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth regulating substances in the rhizosphere, microbial production and function. Adv Agron 62:46–51

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Google Scholar 

  • Asghar HN, Zahir ZA, Khaliq A, Arshad M (2000) Assessment of auxin production from rhizobacteria isolated from different varieties of rapeseed. Pak J Agric Sci 37:101–104

    Google Scholar 

  • Asghar HN, Zahir Z, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth–promoting activities in Brassica juncea L. Biol Fertil Soils 35:231–237

    CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Aydinalp C, Marinova M (2009) The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg J Agric Sci 15:347–350

    Google Scholar 

  • Bainton NJ, Lynch JM, Naseby D, Way JA (2004) Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Microb Ecol 48:349–357

    PubMed  CAS  Google Scholar 

  • Baker R (1991) Diversity in biological control. Crop Prot 10:85–94

    Google Scholar 

  • Bakker PAHM, Raaijmakers JM, Bloemberg GV, Hofte M, Lemanceau P, Cooke M (2007) New perspectives and approaches in plant growth–promoting rhizobacteria research. Eur J Plant Pathol 119:241–242

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    CAS  Google Scholar 

  • Barbieri P, Baggio C, Bazzicalupo M, Galli E, Nuti MP ZG (1991) Azospirillum-Gramineae inter-action: effect of indole-3-acetic acid. In: Polsinelly M, Materassi R, Vincenzini M (eds) Developments in plant and soil sciences; nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 161–168

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth–promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1997a) Azospirillum-plant relationships: environmental and physiological advances. Can J Microbiol 43:103–121

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1997b) Short– and medium– term avenues for Azospirillum inoculation. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth–promoting rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, pp 130–149

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classification: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Belimov AA, Wenzel WW (2009) The role of rhizosphere microorganisms in heavy metal tolerance of higher plants. Asp Appl Biol 98:81–90

    Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 7:241–250

    Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009a) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Davies WJ (2009b) ACC-deaminase-containing rhizobacteria improve vegetative development and yield of potato plants grown under water–limited conditions. Asp Appl Biol 98:163–169

    Google Scholar 

  • Benabdellah K, Abbas Y, Abourouh M, Aroca R, Azcon R (2011) Influence of two bacterial isolates from degraded and non–degraded soils and arbuscular mycorrhizae fungi isolated from semi–arid zone on the growth of Trifolium repens under drought conditions: mechanisms related to bacterial effectiveness. Eur J Soil Biol 47:303–309

    Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    PubMed  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfed BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Google Scholar 

  • Boddey RM, Dobereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fertil Res 42:241–250

    CAS  Google Scholar 

  • Bodelier PLE, Wijlhuizen AG, Blom CWPM, Laanbroek HJ (1997) Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant Soil 190:91–103

    CAS  Google Scholar 

  • Bong CFJ, Sikorowski PP (1991) Histopathology of cytoplasmic polyhedrosis virus (Reoviridae) infection in corn earworm Helicoverpa zea (Boddie) larvae (Insecta: Lepidoptera: Noctuidae). Can J Zool 69:2121–2127

    Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  CAS  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A 98(8):4540–4545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchanan KL (2000) Stress and the evolution of condition dependent signals. Tree 15:156–160

    PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    PubMed  CAS  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Google Scholar 

  • Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E, Okon Y (1998) Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer Academic Publishers, Dordrecht, pp 609–612

    Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry. Science Publishers, Inc., Enfield, pp 229–250

    Google Scholar 

  • Burr TJ, Caesar A (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2:1–20

    Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Ochrobactrum anthropi TRS–2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107:625–634

    PubMed  CAS  Google Scholar 

  • Chandrasekar BR, Ambrose G, Jayabalan N (2005) Influence of biofertilizers and nitrogen source level on the growth and yield of Echinochloa frumentacea (Roxb.), Link. J Agric Technol 1:223–234

    Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress, role of cytokine/abscisic acid balance. Plant Physiol 106:45–51

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    PubMed  CAS  Google Scholar 

  • Choure K, Dubey RC (2012) Development of plant growth promoting microbial consortium based on interaction studies to reduce wilt incidence in Cajanus cajan L. Var. Manak. World J Agric Sci 8:118–128

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp245 produces ABA in chemically–defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • Compant S, Brion D, Jerzy N, Christophe C, Essaïd AB (2005) Use of plant growth–promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conde AM, Chaves M, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    PubMed  CAS  Google Scholar 

  • Daayf F, Adam L, Fernando WGD (2003) Comparative screening of bacteria for biological control of potato late blight (strain US–8), using in vitro, detached–leaves, and whole–plant testing systems. Can J Plant Pathol 25:276–284

    Google Scholar 

  • Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodrıguez-Carvajal MA, Gil–Serrano AM, Espuny MR, Lopez–Baena FJ, Bellogın RA, Megıas M, Ollero FJ (2009) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Google Scholar 

  • Dardanelli MS, Manyani H, Gonzalez–Barroso S, Rodriguez–Carvajal MA, Gil–Serrano AM, Espuny MR, López–Baena FJ, Bellogin RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    CAS  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155–156(1):1–20

    Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    PubMed  CAS  Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer Academic Publishers, Dordrecht, pp 1–26

    Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculants for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth–stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindstrom K, Rasanen LA (2010) Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). Eur J Soil Biol 46:269–272

    CAS  Google Scholar 

  • Egamberdiyeva D (2005) Plant growth promoting rhizobacteria isolated from a calcisol in semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99

    CAS  Google Scholar 

  • El-Komy HMA, Moharram TMM, Safwat MSA (1998) Effects of Azospirillum inoculation on growth and N2 fixation of maize subjected to different levels of FYM using 15 N–dilution method. In: Malik KA (ed) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, London, pp 49–59

    Google Scholar 

  • Fabbri P, DelGallo M (1995) Specific interaction between chickpea (Cicer arietinum) and three chickpea–Rhizobium strains inoculated singularly and in combination with Azospirillum brasilense Cd. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics – physiology –ecology, vol G37, NATO ASI Series, Series G: Ecological Sciences. Springer, Berlin, pp 207–212

    Google Scholar 

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jasquens L, Clement C, Fontaine F, Ait Barka E (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25:496–504

    PubMed  CAS  Google Scholar 

  • Fernando WGD, Zhang Y, Nakkeeran S, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Appl Soil Ecol 40:182–188

    Google Scholar 

  • Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Hass D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide producing strains of Pseudomonas putida. Mol Plant Microbe Interact 9:642–645

    CAS  Google Scholar 

  • Foldes T, Banhegyi I, Herpai Z, Varga L, Szigeti J (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food–born pathogenic and spoilage microorganisms. J Appl Microbiol 89:840–846

    PubMed  CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Physiol Plant Mol Biol 53:203–224

    CAS  Google Scholar 

  • Foster RC (1983) The fine structure of epidermal cell mucilages of roots. New Phytol 91:727–740

    Google Scholar 

  • Frankenberger WT Jr, Arshad M (1991) Yield response of Capsicum annuum to the auxin precursor, L-tryptophan applied to soil. PGRSA Q 19:231–240

    CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York, p 503

    Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO–C48. Arch Microbiol 176:421–426

    PubMed  CAS  Google Scholar 

  • Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP (2007) Characterization of isolated rhizobia of Pachyrhizus erosus cultivated in saline soil of the state of Pernambuco, Brazil. Bragantia 66:497–504

    Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Galal YGM (2003) Assessment of nitrogen availability to wheat (Triticum aestivum L.) from inorganic and organic N sources as affected by Azospirillum brasilense and Rhizobium leguminosarum inoculation. Egypt J Microbiol 38:57–73

    Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    PubMed  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    PubMed  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free–living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    PubMed  CAS  Google Scholar 

  • Glick BR (2004) Bacterial ACC–deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    PubMed  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    PubMed  CAS  Google Scholar 

  • Glick BR (2012) Plant growth–promoting bacteria: mechanisms and applications. In: Ano T, Comi G, Shoda M (eds) Scientifica, Hindawi Publishing Corporation, pp 1–15

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth–promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    PubMed  CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonas. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Soil Biol Biochem 29:1233–1239

    CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by ACC deaminase– producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Glombitza S, Dubuis PH, Thulke O, Welzl G, Bovet L, Götz M, Affenzeller M, Geist B, Hehn A, Asnaghi C, Ernst D, Seidlitz HK, Gundlach H, Mayer KF, Martinoia E, Werck-Reichhart D, Mauch F, Schäffner AR (2004) Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Mol Biol 54:817–835

    PubMed  CAS  Google Scholar 

  • Gould M, Nelson LM, Waterer D, Hynes RK (2008) Biocontrol of Fusarium sambucinum, dry rot of potato, by Serratia plymuthica 5─6. Biocontrol Sci Tech 18:1005–1016

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkatesvarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stress. World J Microbiol Biotechnol 27:1231–1240

    Google Scholar 

  • Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX (2004) Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol Control 29:66–72

    Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent pseudomonas. Biol Fertil Soils 35:399–405

    CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos–Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Google Scholar 

  • Habib N, Ashraf M (2014) Effect of exogenously applied nitric oxide on water relations and ionic composition of rice (Oryza sativa L.) plants under salt stress. Pak J Bot 46:111–116

    CAS  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig A, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Google Scholar 

  • Hamdia MA, Shaddad MAK, Doaa MM (2004) Mechanism of salt tolerance and interactive effect of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean– inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Problem auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hontzeas N, Richardson AO, Belimov A, Safronova VI, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubel F, Beck E (1993) In-situ determination of the P-relations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157:1–9

    Google Scholar 

  • Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microbiol 54:248–258

    PubMed  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Kim KA, Yim WJ, Madhaiyan M, Sa TM (2008) Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J Microbiol Biotechnol 4:1037–1045

    Google Scholar 

  • Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can J Microbiol 39:610–615

    Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvamet R (2007) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B Biointerfaces 60(2):201–206

    PubMed  CAS  Google Scholar 

  • Jeyabal A, Kupuswamy G (2001) Recycling of organic wastes for the production of vermicompost and its response in rice legume cropping system and soil fertility. Eur J Agron 15:153–170

    CAS  Google Scholar 

  • Jofre E, Rivarola V, Balegno H, Mori G (1998) Differential gene expression in Azospirillum brasilense under saline stress. Can J Microbiol 44:929–936

    CAS  Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins–producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    PubMed  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    PubMed  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd-El-Daim IA, Bejai S, Meijer J (2012) Control of drought stress in wheat using plant–growth–promoting bacteria. J Plant Growth Regul 32:122–130

    Google Scholar 

  • Khalid M, Zahir ZA, Waseem A, Arshad M (1999) Azotobacter and L–tryptophan application for improving wheat yield. Pak J Biol Sci 2:739–742

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis, Boca Raton, pp 207–220

    Google Scholar 

  • Khammas KM, Kaiser P (1992) Pectin decomposition and associated nitrogen fixation by mixes cultures of Azospirillum and Bacillus species. Can J Microbiol 38:794–797

    PubMed  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Khan N, Mishra A, Chauhan PS, Nautiyal CS (2011) Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Ann Appl Biol 159:372–386

    CAS  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Google Scholar 

  • Kloepper JW, Mariano RLR (2000) Rhizobacteria to induce plant disease resistance and enhance growth – theory and practice. In: International symposium on biological control for crop protection, Rural Development Administration, Suwon, pp 99–116

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Angers, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Google Scholar 

  • Knox OGG, Killham K, Leifert C (2000) Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Appl Soil Ecol 15:227–231

    Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth–promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    CAS  Google Scholar 

  • Kremer RJ (2007) Deleterious rhizobacteria. In: Gnanammanickam SS (ed) Plant associated bacteria. Springer, Amsterdam, pp 335–357

    Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    PubMed  CAS  Google Scholar 

  • Labuschagne N, Pretorius T, Idris AH (2010) Plant growth promoting rhizobacteria as biocontrol agents against soil–borne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin

    Google Scholar 

  • Lamsal K, Kim SW, Kim YS, Lee YS (2013) Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J Microbiol Biotechnol 23:1–8

    Google Scholar 

  • Leinhos V, Bergmann H (1995) Changes in yield, lignin content and protein pattern of barley (Hordeum vulgare cv. Alexis) induced by drought stress. J Appl Bot 69:206–210

    CAS  Google Scholar 

  • Liu D, Li T, Yang X, Islam E, Jin X, Mahmood Q (2007) Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA. Bull Environ Contam Toxicol 78:280–283

    PubMed  CAS  Google Scholar 

  • Liu RZ, Jiang XL, Guan HS, Li XX, Du YS, Wang P, Mou H (2009) Promotive effects of alginate–derived oligosaccharides on the inducing drought resistance of tomato. J Ocean Univ China (Ocean Coast Sea Res) 8(3):303–311

    CAS  Google Scholar 

  • Lu S, Su W, Li H, Guo ZF (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2– and NO–induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–555

    PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa TM (2007) Characterization of 1-Aminocyclopropane-1-carboxylate deaminase (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 226:867–876

    PubMed  CAS  Google Scholar 

  • Mahmood MH, Khalid A, Khalid M, Arshad M (2008) Response of etiolated pea seedlings and cotton to ethylene produced from L–methionine by soil microorganisms. Pak J Bot 40:859–866

    CAS  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345

    CAS  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marcelis LFM, Van Hooijdonk HV (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 215:57–64

    CAS  Google Scholar 

  • Marcia VBF, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co–inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Google Scholar 

  • Mascher R, Nagy E, Lippmann B, Hornlein S, Fischer S, Scheiding W, Neagoe A, Bergmann H (2005) Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2–aminoethanol: effects on superoxide dismutase activity and chloroplast ultrastructure. Plant Sci 168:691–698

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth–promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth–promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    PubMed  CAS  Google Scholar 

  • McKeon TA, Fernandez-Maculet JC, Yang SF (1995) Biosynthesis and metabolism of ethylene. In: Davies PJ (ed) Plant hormones physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 118–139

    Google Scholar 

  • Mendelsohn R, Nordhaus W, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84:753–771

    Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Wahab IZ, Marziah M (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen–free hydroponics condition. Aust J Crop Sci 4:85–90

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum -PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    CAS  Google Scholar 

  • Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate–solubilizing properties and molecular characterization of zinc–tolerant bacteria. J Basic Microbiol 52:1–10

    Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co–inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    CAS  Google Scholar 

  • Moore TM (1989) Biochemistry and physiology of plant hormones, 2nd edn. Springer, New York, p 330

    Google Scholar 

  • Moutia JFY, Saumtally S, Spaepen S, Vanderleyden J (2010) Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337:233–242

    CAS  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC deaminase confer salt tolerance in maize grown on salt affected soils. Can J Microbiol 55:1302–1309

    PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010a) Rhizobacteria capable of producing ACC–deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010b) Microbial ACC deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    CAS  Google Scholar 

  • Nadeem SM, Shaharoona B, Arshad M, Crowley DE (2012) Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Appl Soil Ecol 62:147–154

    Google Scholar 

  • Naqvi SM, Ansari R (1974) Estimation of diffusible auxin under saline growth conditions. Experientia 30:350–354

    PubMed  CAS  Google Scholar 

  • Nascimento F, Brigido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth–promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131. doi:10.1007/s10725-013-9874-8

    CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Krzysztof W, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    CAS  Google Scholar 

  • Nayani S, Mayak S, Glick BR (1998) Effect of plant growth-promoting rhizobacteria on senescence of flower petals. Indian J Exp Biol 36:836–839

    Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    PubMed  CAS  Google Scholar 

  • Neumann G, Romheld V (2001) The release of root exudates as affected by the plant’s physiological status. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 41–93

    Google Scholar 

  • O’Connel PF (1992) Sustainable agriculture–a valid alternative. Outlook Agric 21(1):5–12

    Google Scholar 

  • Okon Y, Labandera–Gonzalez C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    PubMed  CAS  Google Scholar 

  • Park K, Kloepper J (2000) Activation of PR–1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9

    CAS  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31:53–62

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    PubMed  CAS  Google Scholar 

  • Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacterial interactions. Plant Cell Environ 26:189–199

    CAS  Google Scholar 

  • Petersen DJ, Srinivasan M, Chanway CP (1996) Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co–resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol Lett 142:271–276

    PubMed  CAS  Google Scholar 

  • Petriccione M, Di Patre D, Ferrante P, Papa S, Bartoli G, Fioretto A, Scortichini M (2013) Effects of Pseudomonas fluorescens seed bioinoculation on heavy metal accumulation for Mirabilis jalapa phytoextraction in smelter–contaminated soil. Water Air Soil Pollut 224:1645

    Google Scholar 

  • Pimentel MR, Molina G, Dionísio AP, Marostica MR Jr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:1–11

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria, 1st edn. Springer, Dordrecht, pp 195–230

    Google Scholar 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Acta Phytophylacica Sin 25:209–212

    Google Scholar 

  • Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Hazard Mater 267:17–20

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz CT, Steinberg C, Alabouvette C, Moenne–Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    PubMed  CAS  Google Scholar 

  • Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588

    Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  • Ramarathnam R, Fernando WGD, de Kievit T (2011) The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. Biol Control 56:225–235

    CAS  Google Scholar 

  • Reid MS, Wu MJ (1992) Ethylene and flower senescence. Plant Growth Regul 11:37–43

    CAS  Google Scholar 

  • Rivera-Cruz MC, Narcia AT, Ballona GC, Kohler J, Caravaca F, Roldan A (2008) Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095

    CAS  Google Scholar 

  • Robertson MJ, Bonnett GD, Hughes RM, Muchow RC, Campbell JA (1998) Temperature and leaf area expansion of sugarcane: integration of controlled-environment, field and model studies. Aust J Plant Physiol 25:819–828

    Google Scholar 

  • Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    PubMed  CAS  Google Scholar 

  • Rojas-Tapias D, Moreno–Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Google Scholar 

  • Rosas SB, Andres JA, Rovera M, Correa NS (2006) Phosphate solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biol Biochem 38:3502–3505

    CAS  Google Scholar 

  • Ruiz-Sanchez M, Armada E, Munoz Y, de Salamone IEG, Aroca R, Ruiz–Lozano JM, Azcon R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well–watered and drought conditions. J Plant Physiol 168:1031–1037

    PubMed  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res LSMR- 21

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    PubMed  CAS  Google Scholar 

  • San Francisco S, Houdusse F, Zamarreno AM, Garnica M, Casanova E, Garcia-Mina JM (2005) Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Sci Hortic 106:38–52

    CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    PubMed  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    CAS  Google Scholar 

  • Sari E, Hetebarian HR, Aminian H (2007) The effects of Bacillus pumilus, isolated from wheat rhizosphere, on resistance in wheat seedling roots against the take-all fungus, Gaeumannomyces graminis var. tritici. J Phytopathol 155:720–727

    CAS  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan–derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    CAS  Google Scholar 

  • Sayyed RZ, Gangurde NS, Patel PR, Joshi SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion Arachis hypogaea. Indian J Biotech 9:302–307

    CAS  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot–root allocation in tobacco. Plant J 11:671–691

    CAS  Google Scholar 

  • Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481–485

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    CAS  Google Scholar 

  • Shah S, Li JP, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    PubMed  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    PubMed  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Mirobiol Biotechnol 79:147–155

    CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shanmugam V, Kanoujia N (2011) Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol Control 57:85–93

    Google Scholar 

  • Sharp RG, Chen L, Davies WJ (2011) Inoculation of growing media with the rhizobacterium Variovorax paradoxus 5C-2 reduces unwanted stress responses in hardy ornamental species. Sci Hortic 129:804–811

    Google Scholar 

  • Shehata MM, El–Khawas (2003) Effect of two biofertilizer on growth parameters, yield characters, nitrogenous components, nucleic acids content, minerals, oil content, protein profiles and DNA banding pattern of sunflower (Helianthus annus L. cv. Vedock) yield. Pak J Biol Sci 6:1257–1268

    Google Scholar 

  • Shilev S, Sancho ED, Benlloch-Gonzalez M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage 95:S37–S41

    PubMed  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Sa T (2012) Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. J Plant Growth Regul 31:265–272

    CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    PubMed  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353

    Google Scholar 

  • Sinha J, Biswas CH, Ghosh A, Saha A (2010) Efficacy of vermicompost against fertilizer on Cicer and Pisum and on population diversity of N2 fixing bacteria. J Environ Biol 31(3):287–292

    PubMed  Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    PubMed  CAS  Google Scholar 

  • Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, Andriankaja M, Van Aken O, Van Breusegem F, Fernie AR, Inze D (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smyth EM, McCarthy J, Nevin R, Khan MR, Dow JM, O’Gara F, Doohan FM (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692

    PubMed  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    PubMed  CAS  Google Scholar 

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effect on the germination of Prosopis strombulifera. Ann Bot 96(2):261–267

    PubMed  CAS  Google Scholar 

  • Stamford NP, Santos PR, Santos CERS, Freitas ADS, Dias SHL, Lira Junior MA (2007) Agronomic effectiveness of biofertilizers with phosphate and Acidithiobacillus in a Brazilian tableland acidic soil. Bioresour Technol 98:1311–1318

    PubMed  CAS  Google Scholar 

  • Stephens PM, Crowley JJ, O’Connell C (1993) Selection of pseudomonad strains inhibiting Pythium ultimum on sugar-beet seeds in soil. Soil Biol Biochem 25:1283–1288

    Google Scholar 

  • Stock CA, Mcloughlin TJ, Klein JA, Adang M (1990) Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    CAS  Google Scholar 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant defence in arthropod management programs. Arch Insect Biochem Physiol 51:222–235

    PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraza A, Orozco Mdel C, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose–6–phosphate synthase in rhizobia. Mole Plant Microbe Interact 21:958–966

    CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2000) Plant physiology, 2nd edn. Benjamin Cumings Publishing Company, Redwood City

    Google Scholar 

  • Tandy S, Ammann A, Schulin R, Nowack B (2006) Biodegradation and speciation of residual SS-ethylenediaminedisuccunic acid (EDDS) in soil solution after soil washing. Environ Pollut 142:191–199

    PubMed  CAS  Google Scholar 

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    PubMed  CAS  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clement C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact 25:241–249

    PubMed  CAS  Google Scholar 

  • Tian Q, Chen F, Liu J, Zhang F, Mi G (2008) Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots. J Plant Physiol 165:942–951

    PubMed  CAS  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300

    PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    PubMed  CAS  Google Scholar 

  • Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J (2014) The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int J Phytoremediation 16:643–659

    PubMed  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide–producing plant growth- promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    CAS  Google Scholar 

  • Van Elsas JD, Trevors JT (1997) Modern soil microbiology. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    PubMed  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vilchez S, Manzanera M (2011) Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 91:1297–1304

    PubMed  CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz–Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG–induced drought stress. Mycorrhiza 13:249–256

    PubMed  Google Scholar 

  • Vivas A, Barea JM, Azcon R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266

    PubMed  CAS  Google Scholar 

  • Walton DC, Li Y (1995) Abscisic acid biosynthesis and metabolism. In: Plant hormones: physiology, biochemistry and molecular biology. Dordrecht, pp 140–157

    Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–99

    Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Wilmowicz E, Kesy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    PubMed  CAS  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals–morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    CAS  Google Scholar 

  • Wu SC, Caob ZH, Lib ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth–promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yancheshmeh JB, Khavazi K, Pazira E, Solhi M (2011) Evaluation of inoculation of plant growth–promoting rhizobacteria on cadmium and lead uptake by canola and barley. Afr J Microbiol Res 5:1747–1754

    CAS  Google Scholar 

  • Yang JW, Kloepper JW, Ryu CM (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    PubMed  Google Scholar 

  • Yang L, Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol Biochem 43:915–922

    CAS  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    PubMed  Google Scholar 

  • Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    CAS  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2013) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58:255–261

    PubMed  Google Scholar 

  • Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, Wang QM (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126:103–108

    CAS  Google Scholar 

  • Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of RS-5 on cotton. Plant Soil 297:139–145

    CAS  Google Scholar 

  • Zahir ZA, Arshad M, Azam M, Hussian A (1997) Effect of an auxin precursor L-tryptophan and Azotobacter inoculation on yield and chemical composition of potato under fertilized conditions. J Plant Nutr 20:745–752

    CAS  Google Scholar 

  • Zahir ZA, Abbas SA, Khalid M, Arshad M (2000) Substrate-dependent microbially derived plant hormones for improving growth of maize seedlings. Pak J Biol Sci 3:289–291

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting rhizobacteria application and perspectives in agriculture. Adv Agron 81:96–168

    Google Scholar 

  • Zahir ZA, Asghar HN, Akhtar MJ, Arshad M (2005) Precursor (L-tryptophan)-inoculum (Azotobacter) interactions for improving yields and nitrogen uptake of maize. J Plant Nutr 28:805–817

    CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    PubMed  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    PubMed  CAS  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    PubMed  CAS  Google Scholar 

  • Zahir ZA, Akhtar SS, Ahmad M, Saifullah NSM (2012) Comparative effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize. Int J Agric Biol 14:337–344

    CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    PubMed  CAS  Google Scholar 

  • Zehnder G, Kloepper JW, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Google Scholar 

  • Zhang HM, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A 96:6529–6534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang S, Reddy MS, Kloepper WJ (2002) Development of assays for assessing induced systemic resistance by plant growth–promoting rhizobacteria against blue mold of tobacco. Biol Control 23:79–86

    Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue–specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Ahmad Zahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Nadeem, S.M., Naveed, M., Ahmad, M., Zahir, Z.A. (2015). Rhizosphere Bacteria for Crop Production and Improvement of Stress Tolerance: Mechanisms of Action, Applications, and Future Prospects. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_1

Download citation

Publish with us

Policies and ethics