Skip to main content

Microalgae for Sustainable Energy Production?

  • Chapter
  • First Online:
Energy Security and Development

Abstract

Carbon-neutral liquid fuels are doubtlessly needed for future sustainable transport. Biodiesel produced from oil crops, animal waste, and used cooking oil potentially is an alternative for mineral oils used preferably today, but the quantities available are by far too small to satisfy the needs of a future market. Microalgae constitute powerful unicellular factories with enormous potential for mitigation of miscellaneous pollutants from effluent gases and waste waters. Most of all their outstanding capacity for photosynthetic CO2 fixation underlines their high potential for diminishing current ecological problems. Together with these contributions to beneficial environmental development, various microalgae accumulate high concentrations of oils and even hydrocarbons (30–80 % of cell dry mass formed) beside other high-value marketable products (e.g., polyunsaturated fatty acids or pigments like astaxanthin) as cell constituents. Low cell densities and moderate growth rates typical for algal cultivation are known as the major obstacles toward a broad market penetration of microalgal products: Here, high cell densities are required to obtain reasonable volumetric productivities. For some microalgal strains, mixotrophic cultivation by providing organic carbon substrates together with CO2 results in increased biomass concentration in a first cultivation step. For this purpose, numerous organic waste streams can be applied as substrate. In a second step, the fresh catalytically active algal biomass accumulates desired products via CO2 fixation, e.g., from industrial effluent gases, as the sole carbon source. This can be realized by two-stage, continuously operated closed photo-bioreactor systems. After cell harvest and optimized product recovery, the value-added conversion of residual algal biomass for generation of sustainable energy sources, e.g., in biogas plants, constitutes another challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89(1):3–15

    Article  Google Scholar 

  • Atlić A, Koller M, Scherzer D, Kutschera C, Grillo Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of Poly([(R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91(2):295–304

    Article  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotech 20(3):264–271

    Article  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776

    Article  Google Scholar 

  • Budiyono B, Kusworo TD (2012) Microalgae for stabilizing biogas production from cassava starch wastewater. Int J Waste Resour 2(1):17–21

    Article  Google Scholar 

  • Braunegg G, Lefebvre G, Renner, G, Zeiser A, Haage G, Loidl-Lanthaler K (1995) Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 41(13):239–248

    Google Scholar 

  • Carlson AS, van Beilen JB, Moeller R, Clayton D (2007) In: Bowles D (Ed.) Micro- and Macro-algae: Utility for industrial applications. Outputs from the EPOBIO project, University of York, Newbury, UK, P. 86

    Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bact Rev 33(4):476

    Google Scholar 

  • Chader S, Hacene H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrogen Energ 34(11):4941–4946

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Biores Technol 100(2):833–838

    Article  Google Scholar 

  • Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuine´ S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 151(2):631–640

    Article  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Biores Technol 102(1):207–214

    Article  Google Scholar 

  • Coutteau P (1996) Micro-Algae. In: Manual on the production and use of life food for aquaculture. FAO fisheries technical paper No. 361 , 7–47 (Lavens, P.; Sorgeloos, P.; eds.).

    Google Scholar 

  • Dovì VG, Friedler F, Huisingh D, Klemes JJ (2010) Cleaner energy for sustainable future. J Clean Prod 17(10):889–895

    Article  Google Scholar 

  • Gwehenberger G, Narodoslawsky M (2008) Sustainable processes—The challenge of the 21st century for chemical engineering. Process Saf Environ 86(5):321–327

    Article  Google Scholar 

  • Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) co- and terpolyesters from biodiesel industry-derived by-products. Archaea, 2013.

    Google Scholar 

  • Hoham RW (1975) Optimum temperatures and temperature ranges for growth of snow algae. Arct Alp Res 7(1):13–24

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Microbiol Technol 38(5):569–582

    Article  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388

    Article  Google Scholar 

  • Koller M, Muhr A (2014) Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng Q 28(1):65–77 Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal research 6(A):52–63

    Google Scholar 

  • Krotscheck CM, Narodoslawsky M (1996) The sustainable process index—a new dimension in ecological evaluation. Ecol Eng 6(4):241–258

    Article  Google Scholar 

  • Levin D, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energ 29(2):173–185

    Article  Google Scholar 

  • Ling HU, Seppelt RD (1993) Snow algae of the windmill islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow. Eur J Phycol 28(2):73–84

    Article  Google Scholar 

  • Lodi A, Binaghi L, de Faveri D, Carvalho JCM, Convert A (2005) Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophycea) with carbon source pulse feeding. Ann Microbiol 55(3):181–185

    Google Scholar 

  • Loubière K, Olivo E, Bougaran G, Pruvost J, Robert R, Legrand J (2009) A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow. Biotechnol Bioeng 102(1):132–147

    Article  Google Scholar 

  • Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7:33–38

    Google Scholar 

  • Martínez ME, Camacho F, Jiménez JM, Espínola JB (1997) Influence of light intensity on the kinetics and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Proc Biochem 32(2):93–98

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34(1):1–5

    Article  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    Article  Google Scholar 

  • Oilazola M (2005) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3-5):499–506

    Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Biores Technol 98(3):560–564

    Article  Google Scholar 

  • Schnitzer H, Ulgiati S (2007) Less bad is not good enough: approaching zero emissions techniques and systems. J Clean Prod 15(13):1185–1189

    Article  Google Scholar 

  • Schnitzer H, Brunner C, Gwehenberger G (2007) Minimizing greenhouse gas emissions through the application of solar thermal energy in industrial processes. J Clean Prod 15(13):1271–1286

    Article  Google Scholar 

  • Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina Grima E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1):136–147

    Article  Google Scholar 

  • Van Harmelen T, Oonk H (2006) Microalgae biofixation processes. Application and potential contributions to greenhouse gas mitigation options. In: International Network on Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae. Apeldorn, The Netherlands, P. 56

    Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  Google Scholar 

  • Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44(1):13–18

    Article  MathSciNet  Google Scholar 

  • Yamaoka T, Satoh K, Katoh S (1978) Photosynthetic activities of a thermophilic blue-green alga. Plant Cell Physiol 19(6):943–954

    Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Plant Biotechnol 214(4):552–561

    Google Scholar 

Download references

Acknowledgements

The ongoing research embedded in this review is enabled by the project “PHOTOCHEM—Mikroalgen zur Herstellung von Chemikalien -Grundlagen der Herstellung und Aufarbeitungstechnologien” (project number 5036). The authors gratefully acknowledge the financial support provided by the Austrian Province of Styria (Land Steiermark) from the budget of the “Zukunftsfonds Steiermark.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Koller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Braunegg, G., Koller, M., Salerno, A., Schnitzer, H. (2015). Microalgae for Sustainable Energy Production?. In: Reddy, B., Ulgiati, S. (eds) Energy Security and Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2065-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2065-7_31

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2064-0

  • Online ISBN: 978-81-322-2065-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics