Skip to main content

Microalgae as an Attractive Source for Biofuel Production

  • Chapter
  • First Online:
Environmental Sustainability

Abstract

With the depletion of fossil fuel resources and the limited availability of petroleum-derived transport fuel, along with the contribution to global warming, the environmental benefits of renewable biofuel are seen as the best alternative source in recent years. Among the third-generation biodiesel feed stocks such as food crops (sugarcane, sugar beet, maize and rapeseed) and non-food crops (Jatropha sp., Cassava sp., lignocellulosic materials), microalgae has been hailed as the third-generation biodiesel. Microalgae are the only fuel source that can be sustainably developed in the near future, and can produce ten times more oil than oleaginous plants. Biodiesel from microalgae has received much attention world-wide in recent years due to its carbon-neutral status. The higher neutral lipid contents of microalgae also surpass terrestrial plants for biofuel production, and microalgae are the largest biomass producers. They can accumulate high concentrations of triacylglycerol as a storage lipid under photooxidative stress and other unfavorable environmental conditions within a short period of time. This chapter provides an overview of the production of biodiesel from microalgae and includes algae cultivation, biomass production, harvesting, and downstream processing, along with a list of companies aiming to develop biodiesel from microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    CAS  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    CAS  Google Scholar 

  • An J-Y, Sim S-J, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green algae Botryococcus braunii. J Appl Phycol 15:185–191

    CAS  Google Scholar 

  • Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R (2005) Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol 107:381–386

    CAS  Google Scholar 

  • Antolin G, Tinaut FV, Briceño Y, Castañno V, Pérez C, Ramirez AI (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114

    CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Google Scholar 

  • Bai M-D, Cheng C-H, Wan H-M, Lin Y-H (2011) Microalgal pigments potential as byproducts in lipid production. J Taiwan Inst Chem Eng 42(5):783–786

    CAS  Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87:1815–1835

    CAS  Google Scholar 

  • Banerjee N (2011) U.S. to reduce oil imports by a third by 2021, Obama says. Los Angeles Times. March 31, 2011. http://articles.latimes.com/2011/mar/31/nation/la-na-obama-energy-20110331

  • Benemann JR, Weissman JC, Koopman BL, Oswald WJ (1977) Energy production by microbial photosynthesis. Nature 268:19–23

    CAS  Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    CAS  Google Scholar 

  • Bogen C, Klassen V, Wichmann J, Russa ML, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH (2013) Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresour Technol 133:622–626

    CAS  Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4:267–279

    Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35:313–321

    Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Google Scholar 

  • BP (2011) BP Statistical Review of World Energy, 07.132011. http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    CAS  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Dublin: Sustainable Energy Ireland 88. http://www.seai.ie/Publications/Renewables_Publications_/Bioenergy/Algaereport.pdf

  • Cadenas A, Cabezudo S (1998) Biofuels as sustainable technologies: perspectives for less developed countries. Technol Forecast Soc Change 58:83–103

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    CAS  Google Scholar 

  • Chojnacka K, Marquez-Rocha FJ (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

    Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325

    CAS  Google Scholar 

  • Crimson Renewable Energy, LP. http://www.crimsonrenewable.com/biodiesel-specifications.pdf

  • da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil Production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conver Manage 49:2106–2116

    CAS  Google Scholar 

  • Desmorieux H, Decaen N (2005) Convective drying of Spirulina in thin layer. J Food Eng 66:497–503

    Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    CAS  Google Scholar 

  • Edward M (2009) The algal industry survey – a white paper by Dr. Mark Edward & Centre for Management Technology. http://www.ascension-publishing.com/BIZ/algal-industry-survey.pdf

  • Edzwald JK (1993) Algae, bubbles, coagulants, and dissolved air flotation. Water Sci Technol 27:67–81

    CAS  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642

    CAS  Google Scholar 

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    CAS  Google Scholar 

  • Fu C-C, Hung T-C, Chen J-Y, Su C-H, Wu W-T (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol 101:8750–8754

    CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    CAS  Google Scholar 

  • Goldemberg J, Guardabassi P (2009) Are biofuels a feasible option? Energy Policy 37:10–14

    Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    CAS  Google Scholar 

  • Grima EM, Medina AR, Giménez AG, Sánchez Pérez JA, Camacho FG, Sánchez JLG (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71(9):955–959

    Google Scholar 

  • Grima EM, Belarbi E-H, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185

    CAS  Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs-a summary. Aquac Res 31:637–659

    Google Scholar 

  • Hemaiswarya S, Raja R, Carvalho IS, Ravikumar R, Zambare V, Barh D (2012) An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Appl Microbiol Biotechnol 96:1125–1135

    CAS  Google Scholar 

  • Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng. Article ID 391632, pp 1–12

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  Google Scholar 

  • Huntley ME, Redalje DG (2006) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608

    Google Scholar 

  • Huntley ME, Redalje DG (2008) Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes, volume US 2008/0118964, no 7770322, 1–9

    Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    CAS  Google Scholar 

  • International Energy Agency (2008) World Energy Outlook 2008. OECD/IEA, Paris, France, 1–569. http://www.iea.org/textbase/nppdf/free/2008/weo2008.pdf

  • Jacob-Lopes E, Teixeira Franco T (2010) Microalgae-based systems for carbon dioxide sequestration and industrial biorefineries. In: Momba M, Bux F (eds) Biomass. Sciyo, Croatia, pp 135–146

    Google Scholar 

  • Jiménez C, Cossío BR, Labella D, Xavier Niell F (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179–190

    Google Scholar 

  • Jimenez-Pérez MV, Sánches-Castillo P, Romera O, Fernández-Moreno D, Pérez-Martinez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb Technol 34:392–398

    Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    CAS  Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373

    CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313

    Google Scholar 

  • Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102:4265–4269

    CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    CAS  Google Scholar 

  • Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20:82–85

    CAS  Google Scholar 

  • Lee K, Lee C-G (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng 6:194–199

    CAS  Google Scholar 

  • Lee S, Kim S, Kim J, Kwon G, Yoon B, Oh H (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botyrococcus braunii. Lett Appl Microbiol 27:14–28

    Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    CAS  Google Scholar 

  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008a) Biofuels from microalgae. Biotechnol Progr 24:815–820

    CAS  Google Scholar 

  • Li Y, Wang B, Horsman M, Wu N, Lan CQ (2008b) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol 101:3623–3627

    CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CAS  Google Scholar 

  • MacKay D, Salusbury T (1988) Choosing between centrifugation and crossflow microfiltration. Chem Eng J 477:45–50

    Google Scholar 

  • Martek (2008) Martek Biosciences Corporation. In: Martek, 17.06.2010. http://seekingalpha.com/article/80126-martek-biosciences-corporation-f2q08-qtr-end-04-30-2008-earnings-call-transcript

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    CAS  Google Scholar 

  • McElroy AK (2007) Pipeline Potential. Biodiesel Magazine. January 24. http://www.biodieselmagazine.com/articles/1441/pipeline-potential

  • McGarry MG (1970) Algal flocculation with aluminum sulfate and polyelectrolytes. Res J Water Pollut Control Fed 42:191–201. http://www.jstor.org/stable/25036591

  • Mendes RL, Fernandes HL, Coelho JP, Reis EC, Cabral JMS, Novais JM, Palavra AF (1995) Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 53:99–103

    CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    CAS  Google Scholar 

  • Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production, vol 128, FAO agricultural services bulletin. Food and Agriculture Organization of the United Nations, Osaka

    Google Scholar 

  • Mohn FH (1980) Experiences and strategies in the recovery of biomass in mass culture of microalgae. In: Shelef G, Soeder CJ (eds) Algal biomass. Elsevier, Amsterdam, pp 547–571

    Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70

    CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24–25:355–361

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    CAS  Google Scholar 

  • National Renewable Energy Laboratory (2009) Biodiesel handling and use guide, pp 1–56. http://www.biodiesel.org/docs/using-hotline/nrel-handling-and-use.pdf

  • National Research Council (2007) Water implications of biofuels production. In: National Research Council, 01.07.2010. http://nationalacademies.org/wstb

  • Natrah FMI, Yosoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19:711–718

    CAS  Google Scholar 

  • Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Dry Technol 25:37–48

    CAS  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production-a close look at the economics. Biotechnol Adv 29:24–27

    CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    CAS  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Google Scholar 

  • Őtleş S, Pire R (2001) Fatty acid composition of Chlorella and Spirulina microalgae species. J AOAC Int 84:1708–1714

    Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355

    CAS  Google Scholar 

  • Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Res 39:4531–4535

    CAS  Google Scholar 

  • Piccolo A (2009) Algae oil production and its potential in the Mediterranean region. First EMUNI Research Souk 2009 (EMUNI ReS 2009). The Euro-Mediterranean Student Research Multi-conference Unity and Diversity of Euro-Mediterranean Identities, 9th June

    Google Scholar 

  • Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgae drying by a simple solar device. Int J Solar Energy 18:303–311

    Google Scholar 

  • Pratoomyot J, Srivilas P, Noiraksar T (2005) Fatty acids composition of 10 microalgal species. Songklanakarin J Sci Technol 27:1179–1187

    Google Scholar 

  • Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995

    CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    CAS  Google Scholar 

  • Raja R, Anbazhagan C, Ganesan V, Rengasamy R (2004) Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asian J Chem 16:1081–1089

    CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    CAS  Google Scholar 

  • Ranjbar R, Inoue R, Shiraishi H, Katsuda T, Katoh S (2008) High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J 39:575–580

    CAS  Google Scholar 

  • Raven RPJM, Gregersen KH (2007) Biogas plants in Denmark: successes and setbacks. Renew Sustain Energy Rev 11:116–132

    Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    CAS  Google Scholar 

  • Renaud SM, Thinh LV, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    CAS  Google Scholar 

  • Samorì C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol 101:3274–3279

    Google Scholar 

  • Sarin R, Kumar R, Srivastav B, Puri SK, Tuli DK, Malhotra RK, Kumar A (2009) Biodiesel surrogates: achieving performance demands. Bioresour Technol 100:3022–3028

    CAS  Google Scholar 

  • Sathasivam R, Juntawong N (2013) Modified medium for enhanced growth of Dunaliella strains. Int J Curr Sci 5:67–73

    Google Scholar 

  • Sathasivam R, Kermanee P, Roytrakul S, Juntawong N (2012) Isolation and molecular identification of β-carotene producing strains of Dunaliella salina and Dunaliella bardawil from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. Afr J Biotechnol 11:16677–16687

    CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx U, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    CAS  Google Scholar 

  • Sharp CA (1996) Emissions and lubricity evaluation of rapeseed derived biodiesel fuels [R]. Final Report for Montana Department of Environmental Quality. Southwest Research Institute; November 1996

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program- biodiesel from algae. Report NREL/TP-580–24190. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    CAS  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen- limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    CAS  Google Scholar 

  • Suh IS, Lee C-G (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8:313–321

    CAS  Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation – verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    CAS  Google Scholar 

  • Takagi M, Karseno M, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    CAS  Google Scholar 

  • Tan HH (2008) Algae-to-biodiesel at least five to 10 years away. Energy Current: News for the Business of Energy, Singapore

    Google Scholar 

  • Tan KT, Lee KT (2011) A review on supercritical fluids (SCF) technology in sustainable biodiesel production: potential and challenges. Renew Sustain Energy Rev 15:2452–2456

    CAS  Google Scholar 

  • Thomas WH, Tornabene TG, Weissman J (1984) Screening for lipid yielding microalgae: activities for 1983. SERI/STR-231-2207 http://www.nrel.gov/docs/legosti/old/2207.pdf

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Google Scholar 

  • Uduman N, Bourniquel V, Danquah MK, Hoadley AFA (2011) A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J 174:249–257

    CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    CAS  Google Scholar 

  • Veillette M, Chamoumi M, Nikiema J, Faucheux N, Heitz M (2012) Production of biodiesel from microalgae. In: Nawaz Z (ed) Advances in chemical engineering. Intech, Croatia, pp 245–268

    Google Scholar 

  • Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305

    CAS  Google Scholar 

  • Viswanath B, Mutanda T, White S, Bux F (2010) The microalgae – a future source of biodiesel. Dyn Biochem Process Biotech Mol Biol 4:37–47

    Google Scholar 

  • Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchuk JC (2005) Air-lift bioreactors for algal growth on flue gas: mathematical modeling and pilot-plant studies. Ind Eng Chem Res 44:6154–6163

    CAS  Google Scholar 

  • Watanabe MM, Kawachi M, Hiroki M, Kasai F (2000) NIES collection list of strains. 6th ed, Microalgae and protozoa. Microbial culture collections. National Institute for Environmental Studies, Tsukuba, p 159

    Google Scholar 

  • Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:1–13

    Google Scholar 

  • Wu S-T, Yu S-T, Lin L-P (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108

    CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong X-R, Liu C-Z (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189

    CAS  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    CAS  Google Scholar 

  • Yang J, Rasa E, Tantayotai P, Scow KM, Yuan H, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082

    CAS  Google Scholar 

  • Zeng X, Danquah MK, Chen XD, Lu Y (2011) Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustain Energy Rev 15:3252–3260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathinam Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Ramaraj, S. et al. (2015). Microalgae as an Attractive Source for Biofuel Production. In: Thangavel, P., Sridevi, G. (eds) Environmental Sustainability. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2056-5_8

Download citation

Publish with us

Policies and ethics