Skip to main content

Green Nanotechnology: The Solution to Sustainable Development of Environment

  • Chapter
  • First Online:
Environmental Sustainability

Abstract

The environment is undergoing constant degradation in terms of quality as well as quantity due to various developmental activities occurring for satisfaction of the growing population’s needs. Nanoparticles have been existing in the environment since millions of years and also being utilized since thousands of years in many areas due to their ability to be synthesized and manipulated. Literature has shown the ability of nanoparticles for detoxification of environment with respect to their usage in wastewater treatment, dye degradation, etc. However, the conventional physical and chemical methods have also shown to affect environment as it involves use of toxic substances. Hence, the green nanotechnology has gained considerable interest in recent times as an eco-friendly alternative technology for nanotechnology products. This review highlighted the characteristics, goals, and various issues in concern, of this potential field as an ultimate solution for sustainable development of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACS (2011) Green Nanotechnology Challenges and Opportunities. A white paper addressing the critical challenges to advancing greener nanotechnology issued by the ACS Green Chemistry Institute® in partnership with the Oregon Nanoscience and Microtechnologies Institute.

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmadpour A, Shahsavand A, Shahverdi MR (2003) Current application of nanotechnology in environment. In: Proceedings of the 4th biennial conference of Environmental Specialists Association, Tehran, February 2003.

    Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Islam KN (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:1–7

    Google Scholar 

  • Anandan S, Sathish Kumar P, Pugazhenthiran N, Madhavan J, Maruthamuthu P (2008) Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol Energy Mater Sol Cells 92:929–937

    Article  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Anastas PT, Zimmerman JB (2003) Design through the twelve principles of green engineering. Environ Sci Technol 37:94A–101A

    Article  Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395:553–554

    Article  CAS  Google Scholar 

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005a) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    Article  CAS  Google Scholar 

  • Ankamwar B, Chaudhary M, Sastry M (2005b) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nano-Metal Chem 35:19–26

    Article  CAS  Google Scholar 

  • Arya V (2010) Living systems: eco-friendly nanofactories. Dig J Nanomater Biost 5:9–21

    Google Scholar 

  • Becheri A, DĂĽrr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  • Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, FĂ©rard C (2011) Significance, mechanisms and environmental implications of microbial biomineralization. Compt Rendus Geosci 343:160–167

    Article  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164

    Article  CAS  Google Scholar 

  • Bharde AA, Wani A, Shouche YS, Joy PA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 26:9326–9327

    Article  Google Scholar 

  • Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BLV, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794

    Article  CAS  Google Scholar 

  • Carnes CL, Stipp J, Klabunde KJ, Bonevich J (2002) Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir 18:1352–1359

    Article  CAS  Google Scholar 

  • Darnault C, Rockne K, Stevens A, Mansoori GA, Sturchio N (2005) Fate of environmental pollutants. Water Environ Res 77:2576–2658

    Article  CAS  Google Scholar 

  • Decker SP, Klabunde JS, Khaleel A, Klabunde KJ (2002) Catalyzed destructive adsorption of environmental toxins with nanocrystalline metal oxides. Fluoro-, chloro-, bromocarbons, sulfur, and organophosphorus compounds. Environ Sci Technol 36:762–768

    Article  CAS  Google Scholar 

  • Dong J, Xu Z, Kuznicki SM (2009) Magnetic multi-functional nano composites for environmental applications. Adv Funct Mater 19:1268–1275

    Article  CAS  Google Scholar 

  • Fukuoka A, Kimura J-I, Oshio T, Sakamoto Y, Ichikawa M (2007) Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica. J Am Chem Soc 129:10120–10125

    Article  CAS  Google Scholar 

  • Gail F (2009) First Solar breaks solar energy’s $1 per watt barrier. EDN Network February 26, 2009.

    Google Scholar 

  • Gomathi Devi L, Mohan Reddy K (2010) Enhanced photocatalytic activity of silver metallized TiO2 particles in the degradation of an azo dye methyl orange: characterization and activity at different pH values. Appl Surf Sci 256:3116–3121

    Article  CAS  Google Scholar 

  • Hasna AS, Rajiv P, Kamaraj M, Jagadeeswaran P, Sangeetha G, Rajeshwari S (2012) Plants: green route for nanoparticle synthesis. Int Res J Biol Sci 1:85–90

    Google Scholar 

  • Haverkamp RG, Marshall AT, van Agterveld D (2007) Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanopart Res 9:697–700

    Article  CAS  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H, De Gusseme B, Vlaeminck SE, Boon N, Verstraete W (2009) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76:1221–1225

    Article  CAS  Google Scholar 

  • Hennebel T, De Corte S, Vanhaecke L, Vanherck K, Forrez I, De Gusseme B, Verhagen P, Verbeken K, Van der Bruggen B, Vankelecom I, Boon N, Verstraete W (2010) Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Res 44:1498–1506

    Article  CAS  Google Scholar 

  • Hennebel T, De Corte S, Verstraete W, Boon N (2012) Microbial production and environmental applications of Pd nanoparticles for treatment of halogenated compounds. Curr Opin Biotechnol 23:555–561

    Article  CAS  Google Scholar 

  • Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2:663–664

    Article  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Hutchison JE (2001) Third green chemistry conference, Barcelona, Spain, November 2001.

    Google Scholar 

  • Iliev V, Tomova D, Bilyarska L, Petrov L (2004) Photooxidation of xylenol orange in the presence of palladium-modified TiO2 catalysts. Catal Commun 5:759–763

    Article  CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotech Bioeng 90:59–63

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71:226–229

    Article  CAS  Google Scholar 

  • Johnson DL, Ambrose SH, Bassett TJ, Bowen ML, Crummey DE, Isaacson JS, Johnson DN, Lamb P, Saul M, Winter-Nelson AE (1997) Meanings of environmental terms. J Environ Qual 26:581–589

    Article  CAS  Google Scholar 

  • Jones BJ, Vergne MJ, Bunk DM, Locascio LE, Hayes MA (2007) Cleavage of peptides and proteins using light-generated radicals from titanium dioxide. Anal Chem 79:1327–1332

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908

    Article  CAS  Google Scholar 

  • Ken B (2013) What is green engineering? In: Andrew Jones (ed.), wiseGEEK. http://www.wisegeek.com/what-is-green-engineering.htm

  • Kenney CW, Uchida LA (2007) Use of copper (II) oxide as source of oxygen for oxidation reactions. United States Patent, Number 4582613

    Google Scholar 

  • Khaleel A, Kapoor PN, Klabunde KJ (1999) Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct Mater 11:459–468

    Article  CAS  Google Scholar 

  • Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100:12142–12153

    Article  CAS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  CAS  Google Scholar 

  • Klöppfer W, Curran MA, Frankl P, Jeijungs R, Kohler A, Olsen SI (2007) Nanotechnology and life cycle assessment: a systems approach to nanotechnology and the environment – synthesis of results obtained at a workshop, Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars, Washington, DC 2–3 October 2006

    Google Scholar 

  • Konwarh R, Gogoi B, Philip R, Laskar MA, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B: Biointerfaces 84:338–345

    Article  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerface 76:50–56

    Article  CAS  Google Scholar 

  • Kuvarega AT, Krause RWM, Mamba BB (2011) Nitrogen/Palladium-Codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115:22110–22120

    Article  CAS  Google Scholar 

  • Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korean-Aust Rheol J 17:35–40

    Google Scholar 

  • Lamb AE, Anderson CWN, Haverkamp RG (2001) The extraction of gold from plants and its application to phytomining. Chem NZ 65:31–33

    CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir 23:8982–8987

    Article  CAS  Google Scholar 

  • Li Q, Xie R, Mintz EA, Shang JK (2007a) Enhanced visible-light photocatalytic degradation of humic acid by palladium-modified nitrogen-doped titanium oxide. J Am Ceram Soc 90:3863–3868

    CAS  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007b) Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • LĂłpez ML, Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2005) A XAS study of the binding and reduction of Au (III) by hops biomass. Microchem J 81:50–56

    Article  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. http://dx.doi.org/10.1155/2011/270974

  • Liu Y, Ohko Y, Zhang R, Yang Y, Zhang Z (2010) Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. J Hazard Mater 184:386–391

    Article  CAS  Google Scholar 

  • Lopez PJ, Gautier C, Livage J, Coradin T (2005) Mimicking biogenic silica nanostructures formation. Curr Nanosci 1:73–83

    Article  CAS  Google Scholar 

  • Lucas EM, Klabunde KJ (1999) Nanocrystals as destructive adsorbents for mimics of chemical warfare agents. Nanostruct Mater 12:179–182

    Article  Google Scholar 

  • Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803

    Article  CAS  Google Scholar 

  • Mansoori GA, Bastami TR, Ahmadpour A, Eshagi Z (2008) Environmental application of nanotechnology. Annu Rev Nano Res 2:1–73

    Article  Google Scholar 

  • Mazumder V, Sun S (2009) Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc 131:4588–4589

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 - ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Edn 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859–862

    Article  CAS  Google Scholar 

  • nanoShell (2013) Improved performance coatings. http://www.nanoshell.co.uk/solar-pv

  • Nithya R, Raghunathan R (2009) Synthesis of silver nanoparticles using Pleurotus sajor caju and its antimicrobial activity. Dig J Nanomater Biostruct 4:623–629

    Google Scholar 

  • Noyori R (2005) Pursuing practical elegance in chemical synthesis. Chem Commun 14:1807–1811

    Article  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Popescu M, Velea A, Lõrinczi A (2010) Biogenic production of nanoparticles. Dig J Nanomater Biostruct 5:1035–1040

    Google Scholar 

  • Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Selvaraj K (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J Biotechnol 10:8122–8130

    CAS  Google Scholar 

  • Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Mukherjee A (ed) Biomimetics learning from nature. InTech Publishers, Croatia, pp 1–20

    Google Scholar 

  • Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem Eur J 8:2602–2607

    Article  CAS  Google Scholar 

  • Ravishankar Rai V, Jamuna Bai A (2011) Nanoparticles and their potential application as antimicrobials. In: MĂ©ndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. FORMATEX 2011, Spain, pp 197–209

    Google Scholar 

  • Safavi S, Maleki N, Farjami F, Farjami E (2009) Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. J Electroanal Chem 626:75–79

    Article  CAS  Google Scholar 

  • Saif Hasan S, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:3191–3196

    Article  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis Miller leaf extract: Structure and optical properties. Mater Res Bull 46:2560–2566

    Article  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97:1140–1144

    Article  Google Scholar 

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5:427–432

    Google Scholar 

  • Schmidt KF (2007) Green nanotechnology: it’s easier than you think. Project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78A:101–105

    CAS  Google Scholar 

  • Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem Mater 18:3108–3113

    Article  CAS  Google Scholar 

  • Shahsavand A, Ahmadpour A (2004) The role of nanotechnology in environmental culture development. In: Proceedings of the first international seminar on the methods for environmental culture development, Tehran, June

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Singhal G, Bhavesh R, Sharma AR, Singh RP (2012) Ecofriendly biosynthesis of gold nanoparticles using medicinally important Ocimum basilicum leaf extract. Adv Sci Eng Med 4:62–66

    Article  CAS  Google Scholar 

  • Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164

    Article  Google Scholar 

  • Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833

    Article  CAS  Google Scholar 

  • Stark JV, Klabunde KJ (1996) Nanoscale metal oxide particles/clusters as chemical reagents. Adsorption of hydrogen halides, nitric oxide, and sulfur trioxide on magnesium oxide nanocrystals and compared with microcrystals. Chem Mater 8:1913–1918

    Article  CAS  Google Scholar 

  • Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 8:447–451

    CAS  Google Scholar 

  • Sustainable Nano Coatings (2013) nanoShell Ltd.

    Google Scholar 

  • Takasaki M, Motoyama Y, Higashi K, Yoon S-H, Mochida I, Nagashima H (2008) Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles. Org Lett 10:1601–1604

    Article  CAS  Google Scholar 

  • Thompson DT (2007) Using gold nanoparticles for catalysis. Nano Today 2:40–43

    Article  Google Scholar 

  • Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in wastewater treatment. World Appl Sci J 3:417–433

    Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Article  CAS  Google Scholar 

  • USEPA (2006) Green chemistry. http://www2.epa.gov/green-chemistry

  • Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111:2329–2337

    Article  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with nanosize MgO. J Phys Chem B 103:3225–3228

    Article  CAS  Google Scholar 

  • Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD. J Phys Chem B 104:5118–5123

    Article  CAS  Google Scholar 

  • Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J Am Chem Soc 123:1636–1644

    Article  CAS  Google Scholar 

  • Yang Y, Ma J, Qin Q, Zhai X (2007) Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J Mol Catal A Chem 267:41–48

    Article  CAS  Google Scholar 

  • Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598

    Article  CAS  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwari Sivaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sivaraj, R., Salam, H.A., Rajiv, P., Rajendran, V. (2015). Green Nanotechnology: The Solution to Sustainable Development of Environment. In: Thangavel, P., Sridevi, G. (eds) Environmental Sustainability. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2056-5_18

Download citation

Publish with us

Policies and ethics