Skip to main content

Integrated Management of Mine Waste Using Biogeotechnologies Focusing Thai Mines

  • Chapter
  • First Online:

Abstract

The history of mining for precious minerals dates back to several centuries. Mining is important for economy but causes environmental contamination. However, mine waste reclamation and mine environment cleanup are a subject of recent origin focusing various aspects of biogeotechnologies. In general, the subject of environmental remediation is about three decades old, and today the advances in this field are capable of handling a variety of toxic waste. Different strategies and approaches are employed to render mine waste less toxic. Mining had negative effects on natural resources (biotic and abiotic) and deteriorates the quality of environment. Different types of mine industries are implicated in promoting “industrial deserts” or “lunar scapes” which are overloaded with technogenic waste. Soil washing and cleaning in such situation is cost prohibitive. This chapter deals with reclamation of a zinc, lead, and tin (arsenic) mine waste with reference to Thailand (see graphic abstract Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Garibasu C (2004) Plants against the global epidemic of arsenic poisoning. Environ Int 30:949–951

    CAS  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347

    CAS  Google Scholar 

  • Ardau C, Lattanzi P, Peretti R, Zucca A (2013) Treatment of mine wastes with Transformed Red Muds (TRM) and other iron compounds: leaching column tests. Proc Earth Planet Sci 7:467–470

    CAS  Google Scholar 

  • Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25

    CAS  Google Scholar 

  • Arrykul S, Kooptarnon K, Wittayawarawat W (1996) Contamination of arsenic, cadmium, and lead in Pakpanang River Basin, Nakhon Si Thammarat, Thailand. International Symposium on Geology and Environment, 31 January–2 February, 1996

    Google Scholar 

  • Asensio V, Vega FA, Singh BR, Covelo EF (2013a) Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci Total Environ 443:446–453

    CAS  Google Scholar 

  • Asensio V, Vega FA, Andrade ML, Covelo EF (2013b) Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere 90:603–610

    CAS  Google Scholar 

  • Assavarak P (2012) Constructed identity and community self-expression to perceive human security; case study of Klity village, Kanchanaburi Province, Thailand. Mediter J Social Sci 3:239–246

    Google Scholar 

  • Badiozamani MM, Askari-Nasab H (2014) Integration of reclamation and tailings management in oil sands surface mine planning. Environ Model Softw 51:45–58

    Google Scholar 

  • Bech J, Duran P, Roca N, Poma W, Sanchez I, Barcelo J, Boluda R-PL, Poschenrieder C (2012) Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J Geochem Explor 113:106–111

    CAS  Google Scholar 

  • Bell LC (2001) Establishment of native ecosystems after mining – Australian experience across diverse biogeographic zones. Ecol Eng 17:179–186

    Google Scholar 

  • Benzaazoua M, Bussière B, Demers I, Aubertin M, Fried E, Blier A (2008) Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: application to mine Doyon, Quebec. Can Min Eng 21:330–340

    CAS  Google Scholar 

  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng J, Zhang X, Zheng J, Chang A (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Google Scholar 

  • Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Poll 147:546–553

    CAS  Google Scholar 

  • Bigot M, Guterres J, Rossato L, Pudmenzky A, Doley D, Whittaker M, Pillai-McGarry U, Schmidt S (2013) Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings. J Hazard Mater 248–249:424–434

    Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands-using natural processes. Ecol Eng 8:255–269

    Google Scholar 

  • Bradshaw A (2000) The use of natural processes in reclamation – advantages and difficulties. Lands Urban Plan 51:89–100

    Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126:157–167

    CAS  Google Scholar 

  • Cappai G, De Gioannis G, Muntoni A, Spiga D, Zijlstra JJP (2012) Combined use of a transformed red mud reactive barrier and electrokinetics for remediation of Cr/As contaminated soil. Chemosphere 86:400–408

    CAS  Google Scholar 

  • Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

    CAS  Google Scholar 

  • Chen L, Tian Y, Stehouwer R, Kost D, Guo X, Bigham JM, Beeghly J, Dick WA (2013) Surface coal mine land reclamation using a dry flue gas desulfurization product: long-term biological response. Fuel 105:258–265

    CAS  Google Scholar 

  • Chintakovid W, Visoottiviseth P, Khokiattiwong S, Lauengsuchonkul S (2008) Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere 70:1532–1537

    CAS  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2006) Growth of vetiveria zizanioides and phragmities Australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97:158–170

    CAS  Google Scholar 

  • Choprapwon C, Porapakkham Y (2001) Occurrence of cancer in arsenic contaminated area, Ronpibool District, Nakorn Srithmmarat Province, Thailand. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Amsterdam, pp 201–206

    Google Scholar 

  • De Koe T (1994) Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci Total Environ 145:103–109

    Google Scholar 

  • Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Min Eng 21:317–329

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BD, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamyl cysteine synthetase expression. Nat Biotechnol 20:1140–1145

    CAS  Google Scholar 

  • Dixon HBF (1997) The biochemical action of arsonic acids especially as phosphate analogues. In: Sykes AG (ed) Advances in inorganic chemistry. Academic Press, Inc., USA, pp 191–228

    Google Scholar 

  • Dobran S, Zagury GJ (2005) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 364:239–250

    Google Scholar 

  • Drahota P, Filippi M, Ettler V, Rohovec J, Mihaljevič M, Šebek O (2012) Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump. Sci Total Environ 414:546–555

    CAS  Google Scholar 

  • Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Res 39:3863–3872

    CAS  Google Scholar 

  • Fall M, Célestin JC, Han FS (2009) Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities. Min Eng 22:840–848

    CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    CAS  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    CAS  Google Scholar 

  • Gao Y, Mucci A (2003) Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem Geol 199:91–109

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gregory PJ, Atwell BJ (1991) The fate of carbon in pulse-labelled crops of barley and wheat. Plant Soil 136:205–213

    CAS  Google Scholar 

  • Heeraman DA, Claassen VP, Zasoski RJ (2001) Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.). Plant Soil 234:215–231

    CAS  Google Scholar 

  • Holmström H, Öhlander B (2001) Layers rich in Fe- and Mn-oxyhydroxides formed at the tailings-pond water interface, a possible trap for trace metals in flooded mine tailings. J Geochem Explor 74:189–203

    Google Scholar 

  • Homyog K, Pokethitiyook P, Kruatrachue M, Chaiyarat R, Ngernsansaruay C (2008) Spatial and seasonal variations in lead content of plants colonizing the Bo Ngam lead mine, Thailand. Sci Asia 34:169–178

    CAS  Google Scholar 

  • Huq SM, Joardar JC, Parvin S (2005) Marigold (Tagetes patula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil. Bangladesh J Bot 34:65–70

    Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    CAS  Google Scholar 

  • Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906–1912

    CAS  Google Scholar 

  • Japan International Cooperation Agency (JICA) (2000) Final report on the environmental management planning survey for arsenic contaminated areas of the Nakhon Si Thammarat Province in the Kingdom of Thailand. Mitsui Mineral Development Engineering Co. Ltd., Japan

    Google Scholar 

  • Kalin M, Wheeler WN (2011) Ecological perspectives in restoring mine waste management areas. Proc Environ Sci 9:90–95

    CAS  Google Scholar 

  • Kijjanapanich P, Annachhatre AP, Esposito G, Lens PNL (2014) Use of organic substrates as electron donors for biological sulfate reduction in gypsiferous mine soils from Nakhon Si Thammarat (Thailand). Chemosphere 101:1–7

    CAS  Google Scholar 

  • Kim H, Benson CH (2004) Contributions of advective and diffusive oxygen transport through multilayer composite caps over mine waste. J Contam Hydrol 71:193–218

    CAS  Google Scholar 

  • Koltai H, Kapulnik Y (2010) Arbuscular mycorrhizas: physiology and functions. Springer

    Google Scholar 

  • Kurosawa K, Egashira K, Tani M, Jahiruddin M, Moslehuddin AZM, Rahman ZM (2008) Groundwater–soil–crop relationship with respect to arsenic contamination in farming villages of Bangladesh – a preliminary study. Environ Pollut 156:563–565

    CAS  Google Scholar 

  • Lee RB (1982) Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Ann Bot 50:429–449

    CAS  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53

    CAS  Google Scholar 

  • Li T, Tao Q, Liang C, Shohag MJI, Yang X, Sparks DL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255

    CAS  Google Scholar 

  • Luo Z-B, Wu C, Zhang C, Li H, Lipka U, Polle A (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot (in press) http://dx.doi.org/10.1016/j.envexpbot.2013.10.018 doi:10.1016/j.envexpbot.2013.10.018#doilink

  • Lupo JF, Morrison KF (2007) Geosynthetic design and construction approaches in the mining industry. Geotext Geomembr 25:96–108

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    CAS  Google Scholar 

  • Macías F, Caraballo MA, Nieto JM (2012) Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems. J Hazard Mater 229–230:107–114

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press Ltd., London

    Google Scholar 

  • Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R (2012) Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytoremediat 14:925–938

    Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224:1750

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Mopoung S, Thavornyutikarn P (2006) Leaching of arsenic from contaminated soil amended with red clay. NU Sci J 2(2):151–156

    Google Scholar 

  • Nakwanit S, Visoottiviseth P, Khokiattiwong S, Sangchoom W (2011) Management of arsenic-accumulated waste from constructed wetland treatment of mountain tap-water. J Hazard Mater 185:1081–1085

    CAS  Google Scholar 

  • Nobuntou W, Parkpian P, Oanh NT, Noomhorm A, Delaune RD, Jugsujinda A (2010) Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine. J Environ Sci Health A 45(13):1702–1714

    CAS  Google Scholar 

  • Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Properties of tungsten mine waste geopolymeric binder. Constr Build Mater 22:1201–1211

    Google Scholar 

  • Pang J, Chan GSY, Zhang J, Liang J, Wong MH (2003) Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere 52:1559–1570

    CAS  Google Scholar 

  • Panitlertumpai N, Nakbanpote W, Sangdee A, Thumanu K, Nakai I, Hokura A (2013) Zinc and/or cadmium accumulation in Gynura pseudochina (L.) DC. studied in vitro and the effect on crude protein. J Mol Struct 1036:279–291

    CAS  Google Scholar 

  • Pollution Control Department (2004) Lead contamination in Klity creek, Amphoe Tong Pa Pume, Kanchanaburi Province, Pollution Control Department, Bangkok. (Document in Thai)

    Google Scholar 

  • Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecol Eng 17:55–62

    Google Scholar 

  • Prasad MNV (2012) Exploitation of weeds and ornamentals for bioremediation of metalliferous substrates in the era of climate change. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 487–508. doi:10.1007/978-1-4614-0815-4_23

    Google Scholar 

  • Prasad MNV (2014) Engineered phyto-covers as natural caps for containment of hazardous mine and municipal solid waste dump sites – possible energy sources. In: Oztürk M, Ashraf M, Aksoy A, Ahmad MSA (eds) Phytoremediation for green energy. Springer Science + Business Media, Dordrecht. doi:10.1007/978-94-007-7887-0_3

    Google Scholar 

  • Prasad MNV, Nakbanpote W, Sebastian A, Panitlertumpai N, Phadermrod C (2014) Phytomanagement of Padaeng zinc mine waste, Mae Sot District, Tak Province, Thailand. In: Munir ozturk et al. (eds) Soil remediation and plants. Elsevier. (in press)

    Google Scholar 

  • Pusapukdepob J, Sawangwong P, Pulket C, Satraphat D, Saowakontha S, Panutrakul S (2007) Health risk assessment of villagers who live near a lead mining area: a case study of Klity village, Kanchanaburi province, Thailand. Southeast Asian J Trop Med Public Health 38(1):168–177

    Google Scholar 

  • Ram LC, Masto RE (2010) An appraisal of the potential use of fly ash for reclaiming coal mine spoil. J Environ Manag 91:603–617

    CAS  Google Scholar 

  • Rotkittikhun P, Kruatrachue M, Chaiyarat R, Ngernsansaruay C, Pokethitiyook P, Paijitprapaporn A, Baker AJM (2006) Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ Pollut 144:681–688

    CAS  Google Scholar 

  • Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker AJM (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53

    CAS  Google Scholar 

  • Santibáñez C, Ginocchio R, Varnero MT (2007) Evaluation of nitrate leaching from mine tailings amended with biosolids under Mediterranean type climate conditions. Soil Biol Biochem 39:1333–1340

    Google Scholar 

  • Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10

    Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (1999) Arsenate sensitivity in ericoid and ectomycorrhizal fungi. Environ Toxicol Chem 18:1848–1855

    CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000a) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334

    CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000b) Evolution: symbiotic solution to arsenic contamination. Nature 404:951–952

    CAS  Google Scholar 

  • Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    CAS  Google Scholar 

  • Siripornadulsil S, Siripornadulsil W (2013) Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Safe 94:94–103

    CAS  Google Scholar 

  • Sneller FEC, van Heerwaarden LM, Kraaijeveldsmit FJL, Ten Bookum WM, Koevoets PLM, Schat H, Verkleij JAC (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232

    CAS  Google Scholar 

  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409:1009–1016

    Google Scholar 

  • Soongsombat P, Kruatrachue M, Chaiyarat R, Pokethitiyook P, Ngernsansaruay C (2009) Lead tolerance and accumulation in Pteris vittata and Pityrogramma calomelanos, and their potential for phytoremediation of lead-contaminated soil. Int J Phytoremediat 11:396–412

    CAS  Google Scholar 

  • Sridokchan W, Markich S, Visoottiviseth P (2005) Arsenic tolerance, accumulation and elemental distribution in twelve ferns: a screening study. Australas J Ecotoxicol 11:101–110

    CAS  Google Scholar 

  • Stierle AA, Stierle DB (2013) Bioprospecting in the Berkeley Pit: the use of signal transduction enzyme inhibition assays to isolate bioactive secondary metabolites from the extremophilic fungi of an acid mine Waste Lake. Stud Nat Prod Chem 39:1–45

    CAS  Google Scholar 

  • Stokes A, Sotir R, Chen W, Ghestem M (2010) Soil bio- and eco-engineering in China: past experience and future priorities. Ecol Eng 36:247–257

    Google Scholar 

  • Sukyankij S, Panichpat T (2012) Comparison of sunflower and sorghum in absorbing lead contaminated soil at Klity village, Kanchanaburi province. The 9th National Kasetsart University Kamphaeng saen Conference, 9, pp 428–436

    Google Scholar 

  • Surat W, Kruatrachue M, Pokethitiyook P, Tanhan P, Samranwanich T (2008) Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. Int J Phytoremediat 10(4):325–342

    CAS  Google Scholar 

  • Swaddiwudhipong W, Limpatanachote P, Mahasakpan P, Krintratun S, Punta B, Funkhiew T (2012) Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ Res 112:194–198

    CAS  Google Scholar 

  • Tamang B, Rockwood DL, Langholtz M, Maehr E, Becker B, Segrest S (2008) Fast-growing trees for cogon grass (Imperata cylindrica) suppression and enhanced colonization of understory plant species on a phosphate-mine clay settling area. Ecol Eng 32:329–336

    Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68(2):323–329

    CAS  Google Scholar 

  • Tanhan P, Pokethitiyook P, Kruatrachue M, Chaiyarat R, Upatham S (2011) Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Int J Phytoremediat 13(9):897–911

    CAS  Google Scholar 

  • Tanpibal V (1989) Characteristics and management of tin mine tailings in Thailand. Soil Technol 2:17–26

    Google Scholar 

  • The Nation (2013) Lead contamination: Klity villagers want creek cleaned quickly. Kanchanaburi, March 30, 2013

    Google Scholar 

  • Tlustoš P, Balík J, Pavlíková D, Száková J (1997) The uptake of cadmium, zinc, arsenic and lead by chosen crops. Rostl Výr 43:487–494

    Google Scholar 

  • Truong P (2004) Vetiver grass technology for mine tailings rehabilitation. In: Barker D, Watson A, Sompatpanit S, Northcut B, Maglinao A (eds) Ground and water bioengineering for erosion control and slope stabilization. Science, Enfield, pp 379–389

    Google Scholar 

  • Tu S, Ma LQ, MacDonald GE, Bondada B (2004) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131

    CAS  Google Scholar 

  • Valente T, Gomes P, Pamplona J, de la Torre ML (2012) Natural stabilization of mine waste-dumps – evolution of the vegetation cover in distinctive geochemical and mineralogical environments. J Geochem Explor 123:152–161

    CAS  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    CAS  Google Scholar 

  • Wang HB, He HB, Yang GD, Ye CY, Niu BH, Lin WX (2010) Effects of two species of inorganic arsenic on the nutrient physiology of rice seedlings. Acta Physiol Plant 32:245–251

    Google Scholar 

  • Waranusantigul P, Lee H, Kruatrachue M, Pokethitiyook P, Auesukaree C (2011) Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere 85:584–590

    CAS  Google Scholar 

  • Williams M, Fordyce F, Paijitprapapon A, Charoenchaisri P (1996) Arsenic contamination in surface drainage and groundwater in part of the southeastern Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environ Geol 27:16–33

    CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    CAS  Google Scholar 

  • Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264

    CAS  Google Scholar 

  • Zhang L, Ahmari S, Zhang J (2011) Synthesis and characterization of fly ash modified mine tailings-based geopolymers construction and building materials. Constr Build Mater 25:3773–3781

    Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    CAS  Google Scholar 

  • Zornoza R, Cano AF, Carmona DM, Martínez-Martínez S, Acosta JA (2012) Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 22:22–32

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the receipt of financial support under the auspices of India-Thailand bilateral scientific cooperation ref. DST/INT/THAI/P-02/2012 dated 31-1-13. Thanks are also due to Mahasarakham University for supporting this joining research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. V. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Prasad, M.N.V., Nakbanpote, W. (2015). Integrated Management of Mine Waste Using Biogeotechnologies Focusing Thai Mines. In: Thangavel, P., Sridevi, G. (eds) Environmental Sustainability. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2056-5_14

Download citation

Publish with us

Policies and ethics