Skip to main content

Production of Biosurfactants Using Eco-friendly Microorganisms

  • Chapter
  • First Online:
Environmental Sustainability

Abstract

Pathogenicity of biosurfactant-producing microorganisms is currently raising some health, safety and environmental concerns. As a result, the industrial-scale production and application of biosurfactants as potential alternatives to the synthetic one is still an unachieved task. The production of biosurfactants using nonpathogenic/recombinant strains requires more attention and investigation for some advantages that includes the discovery of non-toxic biosurfactants suitable for all industrial applications, identifying new biosurfactant congeners with better inherent surface-active properties compared to that from pathogens and synthetic ones and the synthesis of biosurfactant without complex metabolic regulations. Although a number of nonpathogenic/recombinant, eco-friendly biosurfactant-producing strains have been documented, there is need for more research in this area focusing especially on improved biosurfactant production by these strains using optimisation processes and the discovery of new nonpathogenic/recombinant strains using molecular techniques for future sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    CAS  Google Scholar 

  • Abouseoud M, Maachi R, Amrane A (2007) Biosurfactant production from olive oil by Pseudomonas fluorescens. In: Méndez-Vilas A (ed) Communication current research and educational topics and trends in applied microbiology. Formatex, Madrid, pp 340–347

    Google Scholar 

  • Amani H, Muller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex-situ enhanced oil recovery. Appl Biochem Biotechnol 170:1080–1093

    CAS  Google Scholar 

  • Andrä J, Rademann J, Howe J, Koch MHJ, Henie H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310

    Google Scholar 

  • Andrea H, West ET, Brittnacher MJ, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76:5402–5411

    Google Scholar 

  • Anyanwu CU, Obi SKC, Okolo BN (2010) Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil. J Appl Sci Res 7:79–87

    Google Scholar 

  • Awashti N, Kumar A, Makkar R, Cameotra S (1999) Enhanced biodegradation of endosulfan a chlorinated pesticide in the presence of a biosurfactant. J Environ Sci Health B 34:793–803

    Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  Google Scholar 

  • Bell KS, Philp JC, Aw DWJ, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    CAS  Google Scholar 

  • Bergmann U, Scheffer J, Köller M, Schönfeld W, Erbs G, Müller FE, König W (1989) Induction of inflammatory mediators (histamine and leukotrienes) from rat peritoneal mast cells and human granulocytes by Pseudomonas aeruginosa strains from burn patients. Infect Immun 57:2187–2195

    CAS  Google Scholar 

  • Bergström S, Theorell H, Davide H (1946) On a metabolic product of Pseudomonas pyocyania. Pyolipic acid active against M. tuberculosis. Ark Kemi Miner Geol 23A:1–12

    Google Scholar 

  • Besson F, Michel G (1992) Biosynthesis of iturin and surfactin by Bacillus subtilis: evidence for amino acid activating enzymes. Biotechnol Lett 14:1013–1018

    CAS  Google Scholar 

  • Bharali P, Das S, Konwar BK, Thakur AJ (2011) Crude biosurfactant from thermophilic Alcaligenes faecalis: feasibility in petro-spill bioremediation. Int Biodeterior Biodegr 65:682–690

    CAS  Google Scholar 

  • Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Lotfi AS, Amoozegar MA (2010) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J Microbiol Biotechnol 26:871–878

    CAS  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer ZM, Hougen HP, Rygaard J, Moser C, Eberl L, Hoiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    CAS  Google Scholar 

  • Blank LM, Ionidis G, Ebert BE, Buhler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

    CAS  Google Scholar 

  • Bowen AB, Braden CR (2006) Invasive enterobacter sakazakii disease in infants. Emerg Infect Dis 12:1185–1189

    Google Scholar 

  • Busscher HJ, van Hoogmoed CG, Geertsema-Doornbusch GI, van der Kuijl-Booij M, van der Mei HC (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl Environ Microbiol 63:3810–3817

    CAS  Google Scholar 

  • Cabrera-Valladares N, Richardson A-P, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    CAS  Google Scholar 

  • Calvo C, Martinez-Checa F, Toledo FL, Porcel J, Quesada E (2002) Characteristics of bioemulsifiers synthesized in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl Microbiol Biotechnol 60:347–351

    CAS  Google Scholar 

  • Calvo C, Manzanera M, Siva-Castro GA, Uad I, González-López J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640

    CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2002) Enterobacter sakazakii infections associated with the use of powdered infant formula – Tennessee, 2001. Morb Mortal Wkly Rep 51:297–300

    Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    CAS  Google Scholar 

  • Chi M-H, Hui RC-Y, Lu C-F, Yang L-C, Li S-Y (2013) Actinomycetoma caused by Nocardia otitidiscaviarum: report of a case in Taiwan with long-term follow-up. Dermatol Sin 31:149–153

    Google Scholar 

  • Christova N, Tuleva B, Lalchev Z, Jordanova A, Jordanov B (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Naturforsch 59:70–74

    CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Cooper DG, Goldernberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    CAS  Google Scholar 

  • Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M, van Delden C, Curty LK, Köhler T (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033

    CAS  Google Scholar 

  • Costa SGVAO, Déziel E, Lépine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627

    CAS  Google Scholar 

  • Crosman JT, Pinchuk RJ, Cooper DG (2002) Enhanced biosurfactant production by Corynebacterium alkanolyticum ATCC 21511 using self-cycling fermentation. J Am Oil Chem Soc 79:467–472

    CAS  Google Scholar 

  • Das K, Murkherjee AK (2007) Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol 102:195–203

    CAS  Google Scholar 

  • De Baere T, Verhelst R, Labit C, Verschraegen G, Wauters G, Claeys G, Vaneechoutte M (2004) Bacteremic infection with Pantoea ananatis. J Clin Microbiol 42:4393–4395

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Donio MBS, Ronica FA, Viji VT, Velmurugan S, Jenifer JSCA, Michaelbabu M, Dhar P, Citarasu T (2013) Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus 2:149–159

    Google Scholar 

  • Dubeau D, Déziel E, Woods DE, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    Google Scholar 

  • Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJC, Weber MM, Rahman PKSM (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184

    CAS  Google Scholar 

  • Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarade SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27:645–654

    CAS  Google Scholar 

  • Edberg SC (1991) US EPA human health assessment: Bacillus subtilis. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Erikson RJ (1976) Industrial applications of the bacilli: a review and prospectus. In: Schlesinger D (ed) Microbiology. American Society for Microbiology, Washington, DC, pp 406–419

    Google Scholar 

  • Eveleigh DE (1981) The microbial production of industrial chemicals. Sci Am 245:154–178

    CAS  Google Scholar 

  • Ferraz C, De Araújo AA, Pastore GM (2002) The influence of vegetable oils on biosurfactant production by Serratia marcescens. Appl Biochem Biotechnol 98–100:841–847

    Google Scholar 

  • Frommer W, Ager B, Archer L, Brunius G, Collins CH, Donikian R, Frontali C, Hamp S, Houwink EH, Küenzi MT, Krämer P, Lagast H, Lund S, Mahler JL, Normand-Plessier F, Sargeant K, Tuijnenburg Muijs G, Vranch SP, Werner RG (1989) Safe biotechnology III. Safety precautions for handling microorganisms of different risk classes. Appl Environ Biotechnol 30:541–552

    Google Scholar 

  • Fujita K, Akino T, Yoshioka H (1988) Characteristics of the heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 56:1385–1387

    CAS  Google Scholar 

  • Fullerton DG, Lwin AA, Lal S (2007) Pantoea agglomerans liver abscess presenting with a painful thigh. Eur J Gastroenterol Hepatol 19:433–435

    Google Scholar 

  • Fung DC, Somerville M, Richardson PS, Sheehan JK (1995) Mucus glycoconjugate complexes released from feline trachea by a bacterial toxin. Am J Respir Cell Mol Biol 12:296–306

    CAS  Google Scholar 

  • Gherna R, Pienta P, Cote R (1989) The American type culture collection catalogue of bacteria and phages. American Type Culture Collection, Rockville

    Google Scholar 

  • Gilbert RJ, Turnbull PCB, Parry JM, Kramer JM (1981) Bacillus cereus and other Bacillus species: their part in food poisoning and other clinical infections. In: Berkeley RCW, Goodfellow M (eds) The aerobic endospore-forming bacteria; classification and identification. Academic, London, pp 297–314

    Google Scholar 

  • Glass MB, Gee JE, Steigerwalt AG, Cavuoti D, Barton T, Hardy RD, Godoy D, Spratt BG, Clark TA, Wilkins PP (2006) Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J Clin Microbiol 44:4601–4604

    CAS  Google Scholar 

  • Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M (2001) Leafy gall formation by Rhodococcus fascians. Annu Rev Phytopathol 39:27–52

    CAS  Google Scholar 

  • Govindammal M, Parthasarathi R (2013) Investigation on antimicrobial activity of biosurfactant produced by Pseudomonas fluorescens isolated from mangrove ecosystem. Int Res J Pharm 4:230–232

    Google Scholar 

  • Graham A, Steel DM, Wilson R, Cole PJ, Alton EWFW, Geddes DM (1993) Effects of purified Pseudomonas rhamnolipids on bioelectric properties of sheep tracheal epithelium. Exp Lung Res 19:77–89

    CAS  Google Scholar 

  • Gudiña EJ, Teixeira JA, Rodrigues LR (2011) Biosurfactant-producing Lactobacilli: Screening, production profiles, and effect of medium composition. Appl Environ Soil Sci 10:1155. http://dx.doi.org/10.1155/2011/201254

  • Gunther NW, Nuñez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a non-pathogenic bacterium. Appl Environ Microbiol 71:2288–2293

    CAS  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the exopolysaccharide produced by Halomonas sp TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 6:1185–1194

    Google Scholar 

  • Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken MD (2013) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS One 8(6):e67717. doi:10.1371/journal.pone. 0067717

    CAS  Google Scholar 

  • Haraga A, West TE, Brittnacher MT, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76:5402–5411

    CAS  Google Scholar 

  • Häussler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593

    Google Scholar 

  • Häussler S, Rohde M, von Neuhoff H, Nimtz M, Steinmetz I (2003) Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect Immun 71:2970–2975

    Google Scholar 

  • Hayes D Jr, Murphy BS, Kuhn RJ, Anstead MI, Feola DJ (2009) Mucoid Inquilinus limosus in a young adult with cystic fibrosis. Pediatr Pulmonol 44:619–621

    Google Scholar 

  • Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590

    CAS  Google Scholar 

  • Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol 112:674–680

    Google Scholar 

  • Hošaková M, Schreiberová O, Ježdik R, Chudoba J, Mosák J, Sigler K, Řezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516

    Google Scholar 

  • Howe J, Bauer J, Andrä J, Schromm AB, Ernst M, Rössle M, Zähringer U, Rademann J, Brandenburg K (2006) Biophysical characterization of synthetic rhamnolipids. FEBS J 273:5101–5112

    CAS  Google Scholar 

  • Hutkins R (2002) Streptococcus thermophilus LMD-9. JGI microbes http://genome.jgi-psf.org/

  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81:28–34

    CAS  Google Scholar 

  • Ihde DC, Armstrong D (1973) Clinical spectrum of infection due to Bacillus species. Am J Med 55:839–845

    CAS  Google Scholar 

  • Isoda H, Kitamoto D, Shinmoto H, Matsumura M, Nakahara T (1997) Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotechnol Biochem 61:609–614

    CAS  Google Scholar 

  • Jacobucci DFC, de Godoy Oriani MR, Durrant LR (2009) Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria. Braz Arch Biol Technol 52:1037–1042

    CAS  Google Scholar 

  • Jain RM, Mody K, Mishra A, Jha B (2012) Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydr Polym 87:2320–2326

    CAS  Google Scholar 

  • Jamal P, Nawawi W, Fazli WMFW, Md Zahangir A (2012) Optimum medium components for biosurfactant production by Klebsiella pneumoniae WMF02 utilizing sludge palm oil as a substrate. Aust J Basic Appl Sci 6:100–108

    CAS  Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A (2013) Identification and characterization of biosurfactants produced by the arctic bacterium Pseudomonas putida BD2. Colloids Surf B: Biointerfaces 110:379–386

    CAS  Google Scholar 

  • Jensen PØ, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338

    CAS  Google Scholar 

  • Johnson MK, Boese-Marrazzo D (1980) Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 29:1028–1033

    CAS  Google Scholar 

  • Joost Wiersinga W, De Vos AF, De Beer R, Wieland CW, Roelofs JJTH, Woods DE, Van Der Poll T (2008) Inflammation patterns induced by different Burkholderia species in mice. Cell Microbiol 10:81–87

    Google Scholar 

  • Jorfi S, Rezaee A, Mobeh-Ali G-A, Jaafarzadeh NA (2013) Application of biosurfactants produced by Pseudomonas aeruginosa SP4 for bioremediation of soils contaminated by pyrene. Soil Sediment Contam 22:890–911

    Google Scholar 

  • Joshi SJ, Suthar H, Yadav AK, Hingurao K, Nerurkar A (2013) Occurrence of biosurfactant-producing Bacillus spp. In diverse habitats. ISRN Biotechnol. Article ID 652340 http://dx.doi.org/10.5402/2013/652340

  • Kahveci A, Ascioglu E, Tigen E, Ari E, Arikan H, Odabasi Z, Ozener C (2011) Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans. Ann Clin Microbiol Antimicrob 10:12

    Google Scholar 

  • Kaliaperumal S, Srinivasan R, Gupta A, Parija SC (2006) Postoperative endophthalmitis due to an unusual pathogen: Alcaligenes faecalis. Eye 20:968–969

    CAS  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474

    CAS  Google Scholar 

  • Kharazmi A, Bibi Z, Nielsen H, Hoiby N, Döring G (1989) Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil and monocyte function. APMIS 97:1068–1072

    CAS  Google Scholar 

  • Kiliç AO, Pavlova SI, Ma WG, Tao L (1996) Analysis of Lactobacillus phages and bacteriocins in American dairy products and characterization of a phage isolated from yogurt. Appl Environ Microbiol 62:2111–2116

    Google Scholar 

  • Kimura N, Hirano S (1988) Inhibitory strains of Bacillus subtilis for growth and aflatoxin-production of aflatoxigenic fungi. Agric Biol Chem 52:1173–1179

    CAS  Google Scholar 

  • Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148:221–225

    CAS  Google Scholar 

  • König B, Bergmann U, König W (1992) Induction of inflammatory mediators release (serotonin and 12-hydroxyeicosatetraenoic acid) from human platelets by Pseudomonas aeruginosa glycolipid. Infect Immun 60:3150–3155

    Google Scholar 

  • Koo H-S, Kim J-S, Eom J-S, You J-Y, Park J-Y, Kim H-S, Song W, Cho HC, Lee KM (2006) Pseudooutbreak of Pantoea species bacteremia associated with contaminated cotton pledgets. Am J Infect Control 34:443–446

    Google Scholar 

  • Körner RJ, Nicol A, Reeves DS, MacGowan AP, Hows J (1994) Ciprofloxacin resistant Serratia marcescens endocarditis as a complication of non-Hodgkin’s lymphoma. J Infect 29:73–76

    Google Scholar 

  • Korzybski T, Kowszyk-Gindifer Z, Kurylowicz W (1978) Antibiotics. Origin, nature and properties, vol 3. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Kownatzki R, Tümmler B, Döring G (1987) Rhamnolipid of Pseudomonas aeruginosa on phosphatides and on phospholipase C activity. J Bacteriol 93:670–674

    Google Scholar 

  • Kramer JM, Turnbull PCB, Munshi G, Gilbert RJ (1982) Identification and characterization of Bacillus cereus and other Bacillus species associated with foods and food poisoning. In: Corry JEL et al (eds) Isolation and identification methods for food poisoning organisms. Academic, London

    Google Scholar 

  • Kratz A, Greenberg D, Barki Y, Cohen E, Lifshitz M (2003) Pantoea agglomerans as a cause of septic arthritis after palm tree thorn injury; case report and literature review. Arch Dis Child 88:542–544

    CAS  Google Scholar 

  • Lai KK (2001) Enterobacter sakazakii infections among neonates, infants, children, and adults: case reports and a review of the literature. Medicine 80:113–122

    CAS  Google Scholar 

  • Lee M, Kim MK, Vancanneyt M, Swings J, Kim S-H, Kang MS, Lee S-T (2005) Tetragenococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413

    CAS  Google Scholar 

  • Lertpatanasuwan N, Sermsri K, Petkaseam A, Trakulsomboon S, Thamlikitkul V, Suputtamongkol Y (1999) Arabinose-positive Burkholderia pseudomallei infection in humans: case report. Clin Infect Dis 28:927–928

    CAS  Google Scholar 

  • Limbago BM, Rasheed JK, Anderson KF, Zhu W, Kitchel B, Watz N, Munro S, Gans H, Banaei N, Kallen AJ (2012) IMP-producing carbapenem-resistant Klebsiella pneumoniae in the United States. J Clin Microbiol 49:4239–4245

    Google Scholar 

  • Llamas I, del Moral A, Martnez-Checa F, Arco Y, Arias S, Quesada E (2006) Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie Van Leeuwenhoek 89:395–403

    CAS  Google Scholar 

  • Loeffler W, Tschen JS-M, Vanittanakom N, Kugler M, Knorpp E, Hsieh T-F, Wu T-G (1986) Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29-3: a comparison with activities of other Bacillus antibiotics. J Phytopathol 115:204–213

    CAS  Google Scholar 

  • Logan NA (1988) Bacillus species of medical and veterinary importance. J Med Microbiol 25:157–165

    CAS  Google Scholar 

  • Maneerat S (2005) Production of biosurfactants using substrates from renewable-resources. Songklanakarin J Sci Technol 27:675–683

    Google Scholar 

  • McClure CD, Schiller NL (1992) Effects of Pseudomonas aeruginosa rhamnolipids on monocyte-derived macrophages. J Leukoc Biol 51:97–102

    CAS  Google Scholar 

  • McLeod MP, Eltis LD (2008) Genomic insights into the aerobic pathways for degradation of organic pollutants. Microbial biodegradation: genomics and molecular biology. Caister Academic Press. http://wwwhorizonpresscom/biod

  • McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587

    Google Scholar 

  • Mitchell RE, Teh KL (2005) Antibacterial iminopyrrolidines from Burkholderia plantarii, a bacterial pathogen of rice. Org Biomol Chem 3:3540–3543

    CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    CAS  Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids – next generation surfactants? J Biotechnol 162:366–380

    Google Scholar 

  • Mulligan CN (2005) Environmental applications of biosurfactants. Environ Pollut 133:183–198

    CAS  Google Scholar 

  • Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol 99:7875–7880

    CAS  Google Scholar 

  • Natsch A, Gfeller H, Gygax P, Schmid J (2005) Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations. Int J Cosmet Sci 27:115–122

    CAS  Google Scholar 

  • Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegrad 63:73–79

    CAS  Google Scholar 

  • Nicas TI, Iglewki BH (1985) The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol 31:387–392

    CAS  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewaters. Bioresour Technol 97:336–341

    CAS  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    CAS  Google Scholar 

  • Oliveira FJS, Vazquez L, de Campos NP, de França FP (2009) Production of rhamnolipids by Pseudomonas alcaligenes strain. Process Biochem 44:383–389

    CAS  Google Scholar 

  • Pacheco GJ, Ciapina EMP, de Barros GE, Junior NP (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 41:685–693

    CAS  Google Scholar 

  • Pal RB, Kale VV (1981) Acinetobacter calcoaceticus: an important opportunistic pathogen. J Postgrad Med 27:218–221

    CAS  Google Scholar 

  • Pantazaki AA, Dimopoulou MI, Simou OM, Pritsa AA (2010) Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol 88:939–951

    CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    CAS  Google Scholar 

  • Pelaez AI, Grrcia-Suarez MM, Manteca A, Melon O, Aranaz C, Cimadevilla R, Mendez FJ, Vazquez F (2009) A fatal case of Nocardia otitidiscaviarum pulmonary infection and brain abscess: taxonomic characterization by molecular techniques. Ann Clin Microbiol Antimicrob 8:11. doi:10.1186/1476-0711-8-11

    Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    CAS  Google Scholar 

  • Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324

    CAS  Google Scholar 

  • Pirog TP, Antonyuk SI, Karpenko YV, Shevchuk TA (2009) The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl Biochem Microbiol 45:272–278

    CAS  Google Scholar 

  • Pirog T, Sofilkanych A, Konon A, Shevchuk T, Ivanov S (2013) Intensification of surfactants’ synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food Bioprod Process 91:149–157

    CAS  Google Scholar 

  • Poli A, Kazak H, Gürleyendağ B, Tommonaro G, Pieretti G, Öner ET, Nicolaus B (2009) High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym 78:651–657

    CAS  Google Scholar 

  • Pornsunthorntawee O, Arttaweeporn N, Paisanjit S, Somboonthanate P, Abe M, Rujiravanit R, Chavadej S (2008) Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem Eng J 42:172–179

    CAS  Google Scholar 

  • Rabiei A, Sharifinik M, Niazi A, Hashemi A, Ayatollahi S (2013) Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol Biotechnol 97:5979–5991

    CAS  Google Scholar 

  • Rahman PKSM, Gakpe E (2008) Production, characterisation and applications of biosurfactants – review. Biotechnology 7:360–370

    CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactants production by strains of Pseudomonas aeruginosa using low-cost materials. Biotechnol Prog 18:1277–1281

    CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168

    CAS  Google Scholar 

  • Rahman PKSM, Pasirayi G, Auger V, Ali Z (2010) Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Biotechnol Appl Biochem 55:45–52

    CAS  Google Scholar 

  • Rashid T, Ebringer A (2007) Ankylosing spondylitis is linked to Klebsiella- the evidence. Clin Rheumatol 26:858–864

    Google Scholar 

  • Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shryock T, Hall R, McDonald-Gibson W, Lund V, Taylor G (1992) Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 72:2271–2277

    CAS  Google Scholar 

  • Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989

    CAS  Google Scholar 

  • Řezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709

    Google Scholar 

  • Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J, Jiang Y, Keenan BG, Castle AB, Haskell RF, Smith TF, Somasundaran P, Jarrell KA (2010) Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1389–1397

    Google Scholar 

  • Rodrigues LR, Teixeira JA, Van der Mei HC, Oliveira R (2006a) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53(1):105–112

    Google Scholar 

  • Rodrigues LR, Teixeira JA, Van der Mei HC, Oliveira R (2006b) Physiochemical and functional characterization of biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerfaces 49:78–85

    Google Scholar 

  • Rodrigues L, Teixeira J, Oliveira R, Vander Mei HC (2006c) Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem 41:1–10

    CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil remediation. Curr Opin Biotechnol 13:249–252

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    CAS  Google Scholar 

  • Rosenberg E, Schwartz Z, Tenebaum A, Rubinovitz C, Legmann R, Ron EZ (1989) A microbial polymer that changes the surface properties of limestone: effect of biodispersan in grinding limestone and making paper. J Dispers Sci Technol 10:241–250

    CAS  Google Scholar 

  • Ryan KJ, Ray CG (2004) Sherris medical microbiology, 4th edn. McGraw-Hill, New York. ISBN 08385-8529-9. Medical publishing division, New York, USA

    Google Scholar 

  • Saimmai A, Udomsilp S, Maneerat S (2013) Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials. Ann Microbiol 63:1327–1339

    CAS  Google Scholar 

  • Seidel M, Alderwick LJ, Sahm H, Besra GS, Eggeling L (2007) Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology 17:210–219

    CAS  Google Scholar 

  • Sierra G (1960) Hemolytic effect of a glycolipid produced by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 26:189–192

    CAS  Google Scholar 

  • Silvi S, Barghini P, Aquilanti A, Juarez-Jimenez B, Fenice M (2013) Physiologic and metabolic characterization of a new marine isolate (BM 39) of Pantoea sp. producing high levels of exopolysaccharides. Microb Cell Fact 12:10

    CAS  Google Scholar 

  • Simmons DG, Davis DE, Rose LP, Gray JG, Luginbuhl GH (1981) Alcaligenes faecalis- associated respiratory disease of chickens. Avian Dis 25:610–613

    CAS  Google Scholar 

  • Smith MD, Angus BJ, Wuthiekanun V, White NJ (1997) Arabinose assimilation defines a non-virulent biotype of Burkholderia pseudomallei. Infect Immun 65:4319–4321

    CAS  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Google Scholar 

  • St Denis M, Ramotar K, Vandemheen K, Tullis E, Ferris W, Chan F, Lee C, Slinger R, Aaron SD (2007) Infection with Burkholderia cepacia complex bacteria and pulmonary exacerbation of cystic fibrosis. Chest 131:1188–1196

    Google Scholar 

  • Stevens DA, Hamilton JR, Johnson N, Kim KK, Lee J-S (2009) Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center: three new species. Medicine 88:244–249

    Google Scholar 

  • Stoimenova E, Vasileva-Tonkova E, Sotirova A, Galabova D, Lalchev Z (2009) Evaluation of different carbon sources for growth and biosurfactant production by Pseudomonas fluorescens isolated from wastewaters. Z Naturforsh C 64:96–102

    CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwim AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-S, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    CAS  Google Scholar 

  • Stutts MJ, Schwab JH, Chen MG, Knowles MR, Boucher RC (1986) Effects of Pseudomonas aeruginosa on bronchial epithelial ion transport. Am Rev Respir Dis 134:17–21

    CAS  Google Scholar 

  • Tahmourespour A, Salehi R, Kermanshahi RK (2011) Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells. Braz J Microbiol 42:330–339

    CAS  Google Scholar 

  • Tavares LFD, Silva PM, Junqueira M, Mariano DCO, Nogueira FCS, Domont GB, Freire DMG, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921

    CAS  Google Scholar 

  • Taylor JR, Mitchell D (2007) The wonder of probiotics. St Martin’s Press, New York

    Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2007) Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett Appl Microbiol 45:686–691

    CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011a) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372

    CAS  Google Scholar 

  • Thavasi R, Subramanyam Nambaru VRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011b) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51:30–36

    CAS  Google Scholar 

  • Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087

    CAS  Google Scholar 

  • Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch C 57:356–360

    CAS  Google Scholar 

  • Tümmler B, Koopmann U, Grothues D, Weissbrodt H, Steinkamp G, von der Hardt H (1991) Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 29:1265–1267

    Google Scholar 

  • Urakami T, Ito-Yoshida C, Araki H, Kijima T, Suzuki K-I, Komagata K (1994) Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int J Syst Evol Bacteriol 44:235–245

    CAS  Google Scholar 

  • US Department of Health and Human Services (1986) NIH guidelines for research involving recombinant DNA molecules; Notice 51 FR 16958

    Google Scholar 

  • US Environmental Protection agency (1997) Bacillus licheniformis final risk assessment. http://epagov/biotech_rule/pubs/fra/fra005htm

    Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of Rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production by Antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol 54:136–141

    CAS  Google Scholar 

  • Vasileva-Tonkova E, Galabova D, Stoimenova E, Lalchev Z (2006) Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexadecane. Z Naturforsch 61:553–559

    CAS  Google Scholar 

  • von Graevenitz A, Bowman J, del Notaro C, Ritzler M (2000) Human infection with Halomonas venusta following fish bite. J Clin Microbiol 38:3123–3124

    Google Scholar 

  • Vyas TK, Dave BP (2011) Production of biosurfactant by Nocardia otitidiscaviarum and its role in biodegradation of crude oil. Int J Environ Sci Technol 8:425–432

    CAS  Google Scholar 

  • Walter V (2009) New approaches for the economic production of rhamnolipid biosurfactants from renewable resources. Dissertation, Karlsruhe Institute of Technology, Germany

    Google Scholar 

  • Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA III, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    CAS  Google Scholar 

  • Wei Y-H, Lai H-C, Chen S-Y, Yeh M-S, Chang J-S (2004) Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnol Lett 26:799–802

    CAS  Google Scholar 

  • Wellinghausen N, Andreas E, Sommerburg O (2005) Inquilinus limosus in patients with cystic fibrosis in Germany. Emerg Infect Dis 11:457–459

    Google Scholar 

  • Wiens GD, Rockey DD, Wu Z, Chang J, Levy R, Crane S, Chen DS, Capri GR, Burnett JR, Sudheesh PS, Schipma MJ, Burd H, Bhattacharyya A, Rhodes LD, Kaul R, Strom MS (2008) Genome sequence of the fish pathogen Renibacterium salmoninarum suggests reductive evolution away from an environmental Arthrobacter ancestor. J Bacteriol 190:6970–6982

    CAS  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80

    CAS  Google Scholar 

  • Wuthiekanun V, Smith MD, Dance DAB, Walsh AL, Pitt TL, White NJ (1996) Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei. J Med Microbiol 45:408–412

    CAS  Google Scholar 

  • Yalçin E, Ergene A (2010) Preliminary characterization of biosurfactant produced by microorganisms isolated from refinery wastewaters. Environ Technol 31:225–232

    Google Scholar 

  • Zaragoza A, Teruel JA, Aranda FJ, Ortiz A (2013) Interaction of trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Coll Interf Sci 408:132–137

    CAS  Google Scholar 

  • Zheng C, Li S, Yu L, Huang L, Wu Q (2009) Study of the biosurfactant-producing profile in a newly isolated Rhodococcus ruber strain. Ann Microbiol 59:771–776

    CAS  Google Scholar 

  • Zhong H, Zeng GM, Yuan XZ, Fu HY, Huang GH, Ren FY (2007) Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 77:447–455

    CAS  Google Scholar 

  • Zimmerman SB, Schwartz CD, Monaghan RL, Pleak BA, Weissberger B, Gilfillan EC, Mochales S, Hernandez S, Currie SA, Tejera E, Stapley EO (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. J Antibiot 40:1677–1681

    CAS  Google Scholar 

  • Zulianello L, Canard C, Köhler T, Caille D, Lacroix J-S, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147

    CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Commonwealth Commission for the financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattanathu K. S. M. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Uzoigwe, C., Ennis, C.J., Rahman, P.K.S.M. (2015). Production of Biosurfactants Using Eco-friendly Microorganisms. In: Thangavel, P., Sridevi, G. (eds) Environmental Sustainability. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2056-5_11

Download citation

Publish with us

Policies and ethics