Skip to main content

Some Concepts in Studies of Kidney Regeneration

  • Chapter
  • First Online:
Perspectives in Regenerative Medicine
  • 524 Accesses

Abstract

In a nutshell, in this penultimate chapter, kidney stem cells, stem cell niche, and strategies by which stem cells from various sources including induced pluripotent stem cells have been used to generate lost renal tissue in chronic and acute kidney failure have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki T, Schweinsberg S, Manasson J, Schedl P (2008) A stage-specific factor confers Fab-7 boundary activity during early embryogenesis in Drosophila. Mol Cell Biol 28(3):1047–1060, Epub 2007 Nov 26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bendtsen TF, Nyengaard JR (1992) The number of glomeruli in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients. Diabetologia 35(9):844–850

    Article  PubMed  CAS  Google Scholar 

  • Brodie JC, Humes DH (2005) The American Society for Pharmacology and Experimental Therapeutics. Pharmacol Rev 57:299–313

    Google Scholar 

  • Costantini S, Di Capua E, Bosi S, Chiodi S, Spinelli S (2006) The management of severe vaginal obstruction from genital chronic graft-versus-host disease: diagnosis, surgical technique and follow-up. Minerva Ginecol 58(1):11–16

    PubMed  CAS  Google Scholar 

  • Dressler GR, Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25(21):5214–5228, Epub 2006 Oct 12

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the post-ischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ezquer FE et al (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14(6):631–640

    Article  PubMed  CAS  Google Scholar 

  • Fang TC, Otto WR, Rao J, Jeffery R, Hunt T, Alison MR, Cook HT, Wright NA, Poulsom R (2008) Haematopoietic lineage-committed bone marrow cells, but not cloned cultured mesenchymal stem cells, contribute to regeneration of renal tubular epithelium after HgCl 2- induced acute tubular injury. Cell Prolif 41:575–591

    Article  PubMed  CAS  Google Scholar 

  • Gao SP, Huang L, Yang XW (2007) Effects of Huoxue Bushen Mixture on skin blood vessel neogenesis and vascular endothelial growth factor expression in hair follicle of C57BL/6 mice. Zhong Xi Yi Jie He Xue Bao 5(2):170–173

    Article  PubMed  Google Scholar 

  • Harari-Steinberg O et al (2011) Organogenesis 7(2):123–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635

    PubMed  CAS  Google Scholar 

  • John R et al (2007) Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury. Am J Physiol Renal Physiol 293(4):F1408–F1412

    Article  Google Scholar 

  • Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  PubMed  CAS  Google Scholar 

  • Lanza RP, Chung HY, Yoo JJ et al (2002) Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20(7):689–696

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Zhang PL, Yang XJ, Prichard JW, Lun M, Brown RE (2006) Morphoproteomic and molecular concomitants of an overexpressed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci 36(3):283–293

    PubMed  CAS  Google Scholar 

  • Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146

    Article  PubMed  Google Scholar 

  • MCCampbell KK, Wingert RA (2012) Renal stem cells: fact or science fiction? Biochem J 444:153–168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Montserrat N, Ramírez-Bajo MJ, Xia Y, Sancho-Martinez I, Moya-Rull D, Miquel-Serra L, Yang S, Nivet E, Cortina C, González F, Izpisua Belmonte JC, Campistol JM (2012) Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors: OCT4 and SOX2. J Biol Chem 287(29):24131–24138, Epub 2012 May 21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  • Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804 [PMC free article] [PubMed]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Osafune K (2010) In vitro regeneration of kidney from pluripotent stem cells. Exp Cell Res 3 1 6:2571–2577

    Article  Google Scholar 

  • Patschan D, Michurina T, Shi HK, Dolff S, Brodsky SV, Vasilieva T, Cohen-Gould L, Winaver J, Chander PN, Enikolopov G, Goligorsky MS (2007) Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia. Kidney Int 71:744–754 [PubMed]

    Article  PubMed  CAS  Google Scholar 

  • Perán M, MA. G, López-Ruiz E, Bustamante M, Jiménez G, Madeddu R, Marchal JA (2012) Functionalized nanostructures with application in regenerative medicine. Int J Mol Sci 13:3847–3886. doi:10.3390/ijms13033847

    Article  PubMed  PubMed Central  Google Scholar 

  • Raiser DM, Zacharek SJ, Roach RR, Curtis SJ, Sinkevicius KW, Gludish DW, Kim CF (2008) Stem cell biology in the lung and lung cancers: using pulmonary context and classic approaches. Cold Spring Harb Symp Quant Biol 73:479–490. doi:10.1101/sqb.2008.73.036, Epub 2008 Nov 21. Review

    Article  PubMed  CAS  Google Scholar 

  • Ross EA, Williams MJ, Hamazaki T et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, Ronconi E, Meini C, Gacci M, Squecco R, Carini M, Gesualdo L, Francini F, Maggi E, Annunziato F, Lasagni L, Serio M, Romagnani S, Romagnani P (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  PubMed  CAS  Google Scholar 

  • Saino N, Romano M, Ferrari RP, Martinelli R, Møller AP (2003) Maternal antibodies but not carotenoids in barn swallow eggs covary with embryo sex. J Evol Biol 16(3):516–522

    Article  PubMed  CAS  Google Scholar 

  • Saxén L, Lehtonen E (1987) Embryonic kidney in organ culture. Differentiation 36(1):2–11

    Article  PubMed  Google Scholar 

  • Takashi Yokoo, Toya Ohashi, Jin Song Shen, Ken Sakurai, Yoichi Miyazaki, Yasunori Utsunomiya, Masanori Takahashi, Yoshio Terada, Yoshikatsu Eto, Tetsuya Kawamura, Noriko Osumi, Tatsuo Hosoya (1 March 2005) Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 102(9):3296–3300

    Google Scholar 

  • Takashi Yokoo, Kei Matsumoto, Shinya Yokote (2011) Potential use of stem cells for kidney regeneration. Int J Nephrol 2011, Article ID 591731, 9 p. doi:10.4061/2011/591731

  • Ting SB, Deneault E, Hope K, Cellot S, Chagraoui J, Mayotte N, Dorn JF, Laverdure JP, Harvey M, Hawkins ED, Russell SM, Maddox PS, Iscove NN, Sauvageau G (2012) Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood 119(11):2510–2522. doi:10.1182/blood-2011-11-393272. Epub 2011 Dec 14

    Article  PubMed  CAS  Google Scholar 

  • Van Koppen A, Joles JA, Van Balkom BWM, Lim SK, de Kleijn D et al (2012) Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE 7(6):e38746. doi:10.1371/journal.pone.0038746

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetter MR, Gibley CW Jr (1966) Morphogenesis and histochemistry of the developing mouse kidney. J Morphol 120(2):135–155

    Article  PubMed  CAS  Google Scholar 

  • Vize PD, Seufert DW, Carroll TJ, Wallingford JB (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188(2):189–204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Ray Banerjee, E. (2014). Some Concepts in Studies of Kidney Regeneration. In: Perspectives in Regenerative Medicine. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2053-4_9

Download citation

Publish with us

Policies and ethics