Use of Stem Cells in Drug Screening

  • Ena Ray Banerjee


“I think there are tremendous parallels to the early days of recombinant DNA in this field,” says James Thomson, director of Regenerative Biology at the Morgridge Institute for Research in Madison, Wisconsin, and one of the founders of Cellular Dynamics International, also in Madison.


Stem Cell Embryonic Stem Cell Caco2 Cell Preimplantation Genetic Diagnosis Somatic Cell Nuclear Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguilar Hernández R, Sánchez De Las Matas MJ, Arriagada C, Barcia C, Caviedes P, Herrero MT, Segura-Aguilar J (2003) MPP(+)-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity. Neurotox Res 5(6):407–410PubMedCrossRefGoogle Scholar
  2. Andrews PW, Meyer LJ, Bednarz KL, Harris H (1984) Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma 3(1):33–39PubMedCrossRefGoogle Scholar
  3. Arriagada R, Le Péchoux C, Baeza MR (2003) Prophylactic cranial irradiation in high-risk non-small cell lung cancer patients. Lung Cancer 42(Suppl 2):S41–S45PubMedCrossRefGoogle Scholar
  4. Augusti-Tocco G, Sato G (1969) Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A 64(1):311–315PubMedCrossRefPubMedCentralGoogle Scholar
  5. Allen DD et al (2005). Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev Ind Pharm 31(8):757–768Google Scholar
  6. Arima M, Plitt J, Stellato C, Bickel C, Motojima S, Makino S, Fukuda T, Schleimer RP (1999) Expression of interleukin-16 by human epithelial cells. Inhibition by dexamethasone. Am J Respir Cell Mol Biol 21(6):684–692PubMedCrossRefGoogle Scholar
  7. Blaineau C, Connan F, Arnaud D, Andrews P, Williams L, McIlhinney J, Avner P (1984) Definition of three species-specific monoclonal antibodies recognizing antigenic structures present on human embryonal carcinoma cells which undergo modulation during in vitro differentiation. Int J Cancer 34(4):487–494PubMedCrossRefGoogle Scholar
  8. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149(2):310–321PubMedCrossRefGoogle Scholar
  9. Brandt BL, Kimes BW, Klier FG (1976) Development of a clonal myogenic cell line with unusual biochemical properties. J Cell Physiol 88(3):255–275PubMedCrossRefGoogle Scholar
  10. Cárdenas AM, Arriagada C, Allen DD, Caviedes R, Cortes JF, Martin J, Couve E, Rapoport SI, Shimahara T, Caviedes P (2002a) Cell lines derived from hippocampal neurons of the normal and trisomy 16 mouse fetus (a model for Down syndrome) exhibit neuronal markers, cholinergic function, and functional neurotransmitter receptors. Exp Neurol 177(1):159–170PubMedCrossRefGoogle Scholar
  11. Cárdenas AM, Allen DD, Arriagada C, Olivares A, Bennett LB, Caviedes R, Dagnino-Subiabre A, Mendoza IE, Segura-Aguilar J, Rapoport SI, Caviedes P (2002b) Establishment and characterization of immortalized neuronal cell lines derived from the spinal cord of normal and trisomy 16 fetal mice, an animal model of Down syndrome. J Neurosci Res 68(1):46–58PubMedCrossRefGoogle Scholar
  12. Castro P, Arriagada G, Moreno M, Morán S, Becker P, Zalaquett R, Godoy I, Córdova S (2000) Humoral rejection in heart transplantation. Report of 2 cases. Rev Med Chil 128(11):1245–1249PubMedCrossRefGoogle Scholar
  13. Caviedes R, Liberona JL, Hidalgo J, Tascon S, Salas K, Jaimovich E (1992) A human skeletal muscle cell line obtained from an adult donor. Biochim Biophys Acta 1134(3):247–255PubMedCrossRefGoogle Scholar
  14. Caviedes P, Olivares E, Salas K, Jaimovich E (1993) Calcium fluxes, ion currents and dihydropyridine receptors in a new immortal cell line from rat heart muscle. J Mol Cell Cardiol 25(7):829–845PubMedCrossRefGoogle Scholar
  15. Cressey D (2012) Stem cells take root in drug development. Nature. doi: 10.1038/Nature.2012.10713 (News article)Google Scholar
  16. Davila JC et al (2004) Use and application of stem cells in toxicology. Toxicol Sci 79:214–233PubMedCrossRefGoogle Scholar
  17. Fields C, Cassano A, Makhoul RG, Allen C, Sims R, Bulgrin J, Meyer A, Bowlin GL, Rittgers SE (2002) Evaluation of electrostatically endothelial cell seeded expanded polytetrafluoroethylene grafts in a canine femoral artery model. J Biomater Appl 17(2):135–152PubMedCrossRefGoogle Scholar
  18. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16(11):1033–1039PubMedCrossRefGoogle Scholar
  19. Frederiksen K, Thorpe A, Richards SJ, Waters J, Dunnett SB, Sandberg BE (1996) Immortalized neural cells from trisomy 16 mice as models for Alzheimer’s disease. Ann N Y Acad Sci 777:415–420PubMedCrossRefGoogle Scholar
  20. Hall BM, Fortney JE, Taylor L, Wood H, Wang L, Adams S, Davis S, Gibson LF (2004) Stromal cells expressing elevated VCAM-1 enhance survival of B lineage tumor cells. Cancer Lett 207(2):229–239PubMedCrossRefGoogle Scholar
  21. Horton PJ, Hawthorne WJ, Walters SN, Patel AT, O’Connell PJ, Chapman JR, Allen RD (2000) Induction of allogeneic islet tolerance in a large-animal model. Cell Transplant 9(6):877–887PubMedGoogle Scholar
  22. Juchau MR, Krasner J, Yaffe SJ (1968) Studies on reduction of azo-linkages in human placental homogenates. Biochem Pharmacol 17(9):1969–1979, No abstract availablePubMedCrossRefGoogle Scholar
  23. Kerin JF, Jeffrey R, Warnes GM, Cox LW, Broom TJ (1981) A simple technique for human embryo transfer into the uterus. Lancet 2(8249):726–727PubMedCrossRefGoogle Scholar
  24. Kim JH, Hammond DN (1995) Septal cell lines derived from the trisomy 16 mouse: generation, characterization, and response to NGF. Brain Res 671(2):299–304PubMedCrossRefGoogle Scholar
  25. Li AP (2001) Screening for human ADME/Tox drug properties in drug discovery. Res Focus 6(7):357–366, DDTGoogle Scholar
  26. Liberona JL, Caviedes P, Tascón S, Hidalgo J, Giglio JR, Sampaio SV, Caviedes R, Jaimovich E (1997) Expression of ion channels during differentiation of a human skeletal muscle cell line. J Muscle Res Cell Motil 18(5):587–598PubMedCrossRefGoogle Scholar
  27. Liberona JL, Powell JA, Shenoi S, Petherbridge L, Caviedes R, Jaimovich E (1998) Differences in both inositol 1,4,5-trisphosphate mass and inositol 1,4,5-trisphosphate receptors between normal and dystrophic skeletal muscle cell lines. Muscle Nerve 21(7):902–909PubMedCrossRefGoogle Scholar
  28. Maury Y et al (2011) Human pluripotent stem cells for disease modeling and drug screen. Bioessays 34:61–71PubMedCrossRefGoogle Scholar
  29. Plendl J, Sinowatz F, Auerbach R (1995) A transformed murine myocardial vascular endothelial cell clone: characterization of cells in vitro and of tumours derived from clone in situ. Virchows Arch 426(6):619–628PubMedCrossRefGoogle Scholar
  30. Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132:549–552PubMedCrossRefGoogle Scholar
  31. Sinz MW, Kim S (2006) Stem cells, immortalized cells and primary cells in ADMET assays. Drug Discov Today Technol| ADMET Technol 3(1):79–85PubMedCrossRefGoogle Scholar
  32. Sipido KR, Marban E (1991) L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ Res 69(6):1487–1499PubMedCrossRefGoogle Scholar
  33. Turner JA, Cardenas DD (1999) Chronic pain problems in individuals with spinal cord injuries. Semin Clin Neuropsychiatry 4(3):186–194PubMedGoogle Scholar
  34. Villas C, Arriagada C, Noain E, Beguiristain JL, Bascuñan F (1998) Surgical treatment of vertebral metastasis. Rev Med Univ Navarra 42(4):188–193PubMedGoogle Scholar
  35. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48(3):173–182PubMedCrossRefGoogle Scholar
  36. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Ena Ray Banerjee
    • 1
  1. 1.Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations