Skip to main content

Hydrogen Peroxide Sensing and Signaling

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

H2O2 has been found to act as a signaling molecule and secondary messenger in many signal transduction pathways like in insulin signaling, cell proliferation, and apoptosis. There are biological sensors which sense the presence of H2O2 and trigger downstream signaling events which in turn activate complex disease pathways. A balance in the H2O2 levels is achieved by its compartmentalization in different cellular compartments and level is maintained by the antioxidant enzymes like catalase, glutathione peroxidase, and thioredoxin peroxidase. In this chapter we describe the way H2O2 is sensed in the biological system and further explain the downstream signaling events. We also explain the role of H2O2 signaling during specific biological events and disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberto B, Enrique C (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250

    Article  Google Scholar 

  2. Elizabeth AV, Alison MD, Brian AM (2007) Hydrogen peroxide sensing and signalling. Mol Cell 26:1–14

    Article  Google Scholar 

  3. Olga BB, Tamara VC, Kurt VF (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52:1179–1190

    Article  Google Scholar 

  4. Ewald S, Philip E (2008) Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Curr Opin Pharmacol 8:153–159

    Article  Google Scholar 

  5. Neill SJ, Desikan R, Clarke A et al (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  6. Zhang P (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272:30615–30618

    Article  CAS  PubMed  Google Scholar 

  7. Graziella S, Antonella A, Carmine C et al (2013) Electrical characterization and hydrogen peroxide sensing properties of gold/nafion: polypyrrole/MWCNTs electrochemical devices. Sensors 13:3878–3888

    Article  Google Scholar 

  8. Marinho HS, Carla R, Fernando A et al (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Youngson C, Colin N, Herman Y et al (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–155

    Article  CAS  PubMed  Google Scholar 

  10. Wang D, Youngson C, Wong V et al (1996) NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci U S A 93:13182–13187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Skulachev VP (2001) H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body. Biochemistry (Mosc) 66:1153–1156

    Article  CAS  Google Scholar 

  12. Acker H, Bolling B, Delpiano MA et al (1992) The meaning of H2O2 generation in carotid body cells for PO2 chemoreception. J Auton Nerv Syst 41:41–51

    Article  CAS  PubMed  Google Scholar 

  13. Hee JC (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113

    Article  Google Scholar 

  14. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  CAS  PubMed  Google Scholar 

  15. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  16. Geiszt M, Leto TL (2004) The Nox family of NAD (P) H oxidases: host defense and beyond. J Biol Chem 279:51715–51718

    Article  CAS  PubMed  Google Scholar 

  17. Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27

    Article  CAS  PubMed  Google Scholar 

  18. Ameziane EHR, Morand S, Boucher JL et al (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 280:30046–30054

    Article  Google Scholar 

  19. Mackay DJ, Hall A (1998) Rho GTPases. J Biol Chem 273:20685–20688

    Article  CAS  PubMed  Google Scholar 

  20. Bae YS, Sung JY, Kim OS et al (2000) Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 275:10527–10531

    Article  CAS  PubMed  Google Scholar 

  21. Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9:11–17

    Article  PubMed  Google Scholar 

  22. Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194

    Article  CAS  PubMed  Google Scholar 

  23. Kim SO, Merchant K, Nudelman R et al (2002) OxyR: a molecular code for redox-related signaling. Cell 109:383–396

    Article  CAS  PubMed  Google Scholar 

  24. Lee JW, Helmann JD (2006) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367

    Article  CAS  PubMed  Google Scholar 

  25. Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859

    Article  CAS  PubMed  Google Scholar 

  26. Derek JJ (1998) Oxidative stress responses of the Yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  Google Scholar 

  27. Delaunay A, Isnard AD, Toledano MB (2000) H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J 19:5157–5166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Branco MR, Marinho HS, Cyrne L et al (2004) Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J Biol Chem 279:6501–6506

    Article  CAS  PubMed  Google Scholar 

  29. Claudie MH, Gias UA, Stephen MV et al (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102:347–355

    Article  Google Scholar 

  30. Kühn FJ, Heiner I, Luckhoff A (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch 451:212–219

    Article  PubMed  Google Scholar 

  31. Togashi K, Yuji H, Tomoko T et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gurling H (1998) Chromosome 21 workshop. Psychiatr Genet 8:109–114

    Article  CAS  PubMed  Google Scholar 

  33. Sano Y, Inamura K, Miyake A et al (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330

    Article  CAS  PubMed  Google Scholar 

  34. Makiko K, Takaaki S, Kenji S et al (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. PNAS 25:1–6

    Google Scholar 

  35. Elizabeth V, Alison D (2011) Hydrogen peroxide as a signalling molecule. Antioxid Redox Signal 2(10):e213

    Google Scholar 

  36. Sablina AA, Budanov AV, Ilyinskaya GV (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Cao C, Leng Y, Liu X et al (2003) Catalase is regulated by ubiquitination and proteasomal degradation. Role of the c-Abl and Arg tyrosine kinases. Biochemistry 42:10348–10353

    Article  CAS  PubMed  Google Scholar 

  38. Chang TS, Jeong W, Choi SY et al (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem 277:25370–25376

    Article  CAS  PubMed  Google Scholar 

  39. Rabilloud T, Heller M, Gasnier F et al (2002) Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 277:19396–19401

    Article  CAS  PubMed  Google Scholar 

  40. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signalling. Science 300:650–653

    Article  CAS  PubMed  Google Scholar 

  41. Faulkner MJ, Helmann JD (2011) Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Signal 15:175–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Marco F (2011) Cross-talk between JNK and SUMO signaling pathways: deSUMOylation is protective against H2O2- induced cell injury. PLoS ONE 6:1–9

    Article  Google Scholar 

  43. Vibha S, Marina P, Eliana G et al (2010) SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction 139:999–1010

    Article  Google Scholar 

  44. Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357

    Article  CAS  PubMed  Google Scholar 

  45. Xu Z, Lam LS, Lam LH et al (2008) Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB J 22:1–11

    Article  CAS  Google Scholar 

  46. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  47. Viedt C, Soto U, Krieger BHI (2000) Differential activation of mitogen activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948

    Article  CAS  PubMed  Google Scholar 

  48. McNamara CA, Sarembock IJ, Gimple LW et al (1993) Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 91:94–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Patterson C, Ruef J, Madamanchi NR et al (1999) Stimulation of a vascular smooth muscle cell NAD (P) H oxidase by thrombin. Evidence that p47phox may participate in forming this oxidase in vitro and in vivo. J Biol Chem 274:19814–19822

    Article  CAS  PubMed  Google Scholar 

  50. Alonso A, Sasin J, Bottni S et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  51. Salmeen A, Andersen JN, Myers MP et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    Article  CAS  PubMed  Google Scholar 

  52. True AL, Rahman A, Malik AB (2000) Activation of NF-kappaB induced by H(2)O(2) and TNF-alpha and its effects on ICAM-1 expression in endothelial cells. Am Physiol Lung Cell Mol Physiol 279:L302–L311

    CAS  Google Scholar 

  53. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36

    Article  CAS  PubMed  Google Scholar 

  54. Ruiz-Gines JA, Lopez-Ongil S, Gonzalez-Rubio M (2000) Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J Cardiovasc Pharmacol 35:109–113

    Article  CAS  PubMed  Google Scholar 

  55. Colavitti R, Pani G, Bedogni B et al (1998) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor- 2/KDR. J Biol Chem 277:3101–3108

    Article  Google Scholar 

  56. Lin SJ, Shyue SK, Liu PL et al (1999) Adenovirus-mediated overexpression of catalase attenuates oxLDL induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen- activated protein kinase pathways. J Mol Cell Cardiol 36:129–139

    Article  Google Scholar 

  57. Chen K, Thomas SR, Albano A (2002) Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling. J Biol Chem 279:35079–35086

    Article  Google Scholar 

  58. Brennan JP, Eaton P (2006) Oxidized proteins in cardiac ischemia and reperfusion. In: Dalle-Donne I, Scaloni A, Allan Butterfield D (eds) Redox proteomics: from protein modifications to cellular dysfunction and diseases. Wiley, Hoboken, pp 605–649

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Rani, V., Mishra, S., Yadav, T., Yadav, U.C.S., Kohli, S. (2015). Hydrogen Peroxide Sensing and Signaling. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_8

Download citation

Publish with us

Policies and ethics