Skip to main content

Gene–Environment Interaction in Oxidative Stress-Induced Pathologies

  • Chapter
  • First Online:
  • 2296 Accesses

Abstract

Interaction between the environment and genes and resultant phenotype determine the onset as well as severity of many complex diseases such as cardiovascular, respiratory, age-related diseases and cancers. However, the relative contributions of either environmental or genetic component in these diseases are difficult to assess. Addition of oxidative stress dimension to this equation further complicates the scenario. The role of oxidative stress in the initiation and propagation of various diseases has been extensively investigated which has enhanced our understanding of how interaction between environment and genetic components leads to manifestation of these pathologies. The genetic predisposition to a disease may or may not be evident depending upon exposure to a particular environment. Similarly, exposure to a particular environment may determine the genetic background of an individual. These possible determinants and their constant interactions shape the molecular machinery that regulates human health and diseases. It is therefore required to consider the genes, environment, as well as their interaction in order to understand the etiology of various complex diseases. The better understanding of gene–environment interactions will enhance our knowledge about the emergence of various complex diseases and pave way to design novel preventive and therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 342:481–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Pham-Huy LA, He H, Huy CP et al (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Noori S (2012) An overview of oxidative stress and antioxidant defensive system 1:413

    Google Scholar 

  4. Shadyro OI, Yurkova IL, Kisel MA (2002) Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int J Radiat Biol 78:211–217

    Article  CAS  PubMed  Google Scholar 

  5. de Gruijl FR (2002) Photocarcinogenesis: UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol 15:316–320

    Article  PubMed  Google Scholar 

  6. Berneburg M, Plettenberg H, Krutmann J (2000) Photoaging of human skin. Photodermatol Photoimmunol Photomed 16:239–244

    Article  CAS  PubMed  Google Scholar 

  7. Sander CS, Chang H, Salzmann S et al (2002) Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol 118:618–625

    Article  CAS  PubMed  Google Scholar 

  8. Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502

    Article  CAS  PubMed  Google Scholar 

  9. Hohn A, Jung T, Grimm S et al (2011) Lipofuscin inhibits the proteasome by binding to surface motifs. Free Radic Biol Med 50:585–591

    Article  PubMed  Google Scholar 

  10. Wenk J, Brenneisen P, Meeves C et al (2001) UV-induced oxidative stress and photoaging. Curr Probl Dermatol 29:83–94

    Article  CAS  PubMed  Google Scholar 

  11. Yang JH, Lee HC, Wei YH (1995) Photoageing-associated mitochondrial DNA length mutations in human skin. Arch Dermatol Res 287:641–648

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi H, Runger TM (2013) Longwave UV light induces the aging-associated progerin. J Invest Dermatol 133:1857–1862

    Article  CAS  PubMed  Google Scholar 

  13. Conrad B, Antonarakis SE (2007) Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 8:17–35

    Article  CAS  PubMed  Google Scholar 

  14. Rodgman A, Perfetti TA (2013) The chemical components of tobacco and tobacco smoke. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Clunes LA, Bridges A, Alexis N et al (2008) In vivo versus in vitro airway surface liquid nicotine levels following cigarette smoke exposure. J Anal Toxicol 32:201–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ahn KS, Aggarwal BB (2005) Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056:218–233

    Article  CAS  PubMed  Google Scholar 

  17. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28:219–242

    Article  CAS  PubMed  Google Scholar 

  18. Maio S, Baldacci S, Martini F et al (2014) COPD management according to old and new GOLD guidelines: an observational study with Italian general practitioners. Curr Med Res Opin 30:1–33

    Article  Google Scholar 

  19. Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  20. Giudice A, Arra C, Turco MC (2010) Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol Biol 647:37–74

    Article  CAS  PubMed  Google Scholar 

  21. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  22. Siomek A (2012) NF-kappaB signaling pathway and free radical impact. Acta Biochim Pol 59:323–331

    CAS  PubMed  Google Scholar 

  23. Ma Q (2010) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125:376–393

    Article  CAS  PubMed  Google Scholar 

  24. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    CAS  PubMed  Google Scholar 

  26. Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008

    Article  PubMed  Google Scholar 

  27. Cooke MS, Evans MD, Dizdaroglu M et al (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  28. Freitas AA, De Magalhaes JP (2011) A review and appraisal of the DNA damage theory of ageing. Mutat Res 728:12–22

    Article  CAS  PubMed  Google Scholar 

  29. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hergersberg M (1991) Biological aspects of cytosine methylation in eukaryotic cells. Experientia 47:1171–1185

    Article  CAS  PubMed  Google Scholar 

  31. Goto K, Numata M, Komura JI et al (1994) Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 56:39–44

    Article  CAS  PubMed  Google Scholar 

  32. Ramsahoye BH, Biniszkiewicz D, Lyko F et al (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ziech D, Franco R, Pappa A et al (2011) Reactive Oxygen Species (ROS)––induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711:167–173

    Article  CAS  PubMed  Google Scholar 

  34. Mohn F, Weber M, Rebhan M et al (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30:755–766

    Article  CAS  PubMed  Google Scholar 

  35. Nishida N, Kudo M (2013) Oxidative stress and epigenetic instability in human hepatocarcinogenesis. Dig Dis 3:447–453

    Article  Google Scholar 

  36. Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lim SO, Gu JM, Kim MS et al (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135:2128–2140

    Article  CAS  PubMed  Google Scholar 

  38. Mah WC, Lee CG (2014) DNA methylation: potential biomarker in hepatocellular carcinoma. Biomarker Res 2:1–13

    Article  Google Scholar 

  39. Rahman I, Marwick J, Kirkham P (2004) Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 68:1255–1267

    Article  CAS  PubMed  Google Scholar 

  40. Pinney SE, Simmons RA (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 21:223–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dich J, Zahm SH, Hanberg A et al (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  CAS  PubMed  Google Scholar 

  42. Mills KT, Blair A, Freeman LE et al (2009) Pesticides and myocardial infarction incidence and mortality among male pesticide applicators in the Agricultural Health Study. Am J Epidemiol 170:892–900

    Article  PubMed Central  PubMed  Google Scholar 

  43. Baldi I, Lebailly P, Mohammed-Brahim B et al (2003) Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157:409–414

    Article  PubMed  Google Scholar 

  44. Hernandez AF, Lacasana M, Fernando G et al (2013) Evaluation of pesticide-induced oxidative stress from a gene-environment interaction perspective. Toxicology 307:95–102

    Article  CAS  PubMed  Google Scholar 

  45. Gawarammana IB, Buckley NA (2011) Medical management of paraquat ingestion. Br J Clin Pharmacol 72:745–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Li N, Ragheb K, Lawler G et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  CAS  PubMed  Google Scholar 

  47. Lopez O, Hernandez AF, Rodrigo L et al (2007) Changes in antioxidant enzymes in humans with long-term exposure to pesticides. Toxicol Lett 171:146–153

    Article  CAS  PubMed  Google Scholar 

  48. Ojha A, Yaduvanshi SK, Srivastava N (2011) Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic Biochem Physiol 99:148–156

    Article  CAS  Google Scholar 

  49. Ogut S, Gultekin F, Kisioglu AN et al (2011) Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol Health 27:820–825

    Article  CAS  Google Scholar 

  50. Lukaszewicz-Hussain A (2010) Role of oxidative stress in organophosphate insecticide toxicity – short review. Pestic Biochem Physiol 98:145–150

    Article  CAS  Google Scholar 

  51. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177

    Article  CAS  PubMed  Google Scholar 

  52. Sun C, Burgner DP, Ponsonby AL et al (2013) Effects of early-life environment and epigenetics on cardiovascular disease risk in children: highlighting the role of twin studies. Pediatr Res 73:523–530

    Article  CAS  PubMed  Google Scholar 

  53. Kukreja RC, Hess ML (1992) The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655

    Article  CAS  PubMed  Google Scholar 

  54. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  55. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  56. Charo IF, Taub R (2011) Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov 10:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555:589–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rudolph TK, Rudolph V, Baldus S (2008) Contribution of myeloperoxidase to smoking-dependent vascular inflammation. Proc Am Thorac Soc 5:820–823

    Article  PubMed  Google Scholar 

  60. Heinloth A, Heermeier K, Raff U et al (2000) Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells. J Am Soc Nephrol 11:1819–1825

    CAS  PubMed  Google Scholar 

  61. Mehta JL, Li DY (1998) Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun 248:511–514

    Article  CAS  PubMed  Google Scholar 

  62. Sawamura T, Kume N, Aoyama T et al (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73–77

    Article  CAS  PubMed  Google Scholar 

  63. Leonardi A, Chariot A, Claudio E et al (2000) CIKS, a connection to Ikappa B kinase and stress-activated protein kinase. Proc Natl Acad Sci U S A 97:10494–10499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Valente AJ, Irimpen AM, Siebenlistd U et al (2014) OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med 70C:117–128

    Article  Google Scholar 

  65. Valente AJ, Clark RA, Siddesha JM et al (2012) CIKS (Act1 or TRAF3IP2) mediates Angiotensin-II-induced Interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy. J Mol Cell Cardiol 53:113–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Moore KJ, Tabas I (2011) The cellular biology of macrophages in atherosclerosis. Cell 145:341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kzhyshkowska J, Neyen C, Gordon S (2012) Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217:492–502

    Article  CAS  PubMed  Google Scholar 

  68. Lopez AD, Murray CC (1998) The global burden of disease, 1990–2020. Nat Med 4(11):1241–1243

    Article  CAS  PubMed  Google Scholar 

  69. Dennis RJ, Maldonado D, Norman S et al (1996) Woodsmoke exposure and risk for obstructive airways disease among women. Chest J 109:115–119

    Article  CAS  Google Scholar 

  70. Brebner JA, Stockley RA (2013) Recent advances in alpha-1-antitrypsin deficiency-related lung disease. Expert Rev Respir Med 7:213–229

    Article  CAS  PubMed  Google Scholar 

  71. Mohamadin AM (2001) Possible role of hydroxyl radicals in the oxidation of dichloroacetonitrile by Fenton-like reaction. J Inorg Biochem 84:97–105

    Article  CAS  PubMed  Google Scholar 

  72. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  73. Ghio AJ, Pritchard RJ, Dittrich KL et al (1997) Non-heme (Fe3+) in the lung increases with age in both humans and rats. J Lab Clin Med 129:53–61

    Article  CAS  PubMed  Google Scholar 

  74. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  PubMed  Google Scholar 

  75. Ichinose M, Sugiura H, Yamagata S et al (2000) Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 162:701–706

    Article  CAS  PubMed  Google Scholar 

  76. Ito K, Hanazawa T, Tomita K et al (2004) Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 315:240–245

    Article  CAS  PubMed  Google Scholar 

  77. Parola M, Bellomo G, Robino G et al (1999) 4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. Antioxid Redox Signal 1:255–284

    Article  CAS  PubMed  Google Scholar 

  78. Yao H, Hwang JW, Moscat J et al (2010) Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications. J Biol Chem 285:5405–5416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Adcock IM, Ito K, Barnes PJ et al (2005) Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD 2:445–455

    Article  PubMed  Google Scholar 

  80. Marwick JA, Kirkham PA, Stevenson CS et al (2004) Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 31:633–642

    Article  CAS  PubMed  Google Scholar 

  81. Smith LJ, Houston M, Anderson J et al (1993) Increased levels of glutathione in bronchoalveolar lavage fluid from patients with asthma. Am Rev Respir Dis 147:1461–1464

    Article  CAS  PubMed  Google Scholar 

  82. Stover SK, Gushansky GA, Salmen JJ et al (2000) Regulation of γ-Glutamate-cysteine ligase expression by oxidative stress in the mouse preimplantation embryo. Toxicol Appl Pharmacol 168:153–159

    Article  CAS  PubMed  Google Scholar 

  83. Rahman I, van Schadewijk AA, Hiemstra PS et al (2000) Localization of gamma-glutamylcysteine synthetase messenger rna expression in lungs of smokers and patients with chronic obstructive pulmonary disease. Free Radic Biol Med 28:920–925

    Article  CAS  PubMed  Google Scholar 

  84. Gilks CB, Price K, Wright JL et al (1998) Antioxidant gene expression in rat lung after exposure to cigarette smoke. Am J Pathol 152:269–278

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Tashkin DP, Murray RP (2009) Smoking cessation in chronic obstructive pulmonary disease. Respir Med 103:963–974

    Article  PubMed  Google Scholar 

  86. Rangasamy T, Misra V, Biswal S (2009) Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells and global alterations in gene expression. Am J Physiol Lung Cell Mol Physiol 296:L888–L900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Rangasamy T, Cho CY, Thimmulappa RK et al (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114:1248–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The award of Ramanujan Fellowship and financial support from Department of Science and Technology (DST), Government of India, to Dr. Umesh C. S. Yadav is acknowledged. SSV, NP and RP acknowledge financial support from UGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Chand Singh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Vundru, S.S., Prasad, N., Patel, R., Rani, V., Yadav, U.C.S. (2015). Gene–Environment Interaction in Oxidative Stress-Induced Pathologies. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_6

Download citation

Publish with us

Policies and ethics