Skip to main content

Tools and Techniques to Measure Oxidative Stress

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Oxidative stress overwhelms the natural antioxidant defense system by creating imbalance in production and consumption of reactive oxygen species (ROS). A number of reactive molecules and free radicals exemplify the ROS. Accurate measurement of ROS may help in the diagnosis of various diseases such as diabetes, cancer, and cardiovascular diseases. The robust and sensitive assays are required for its detection and quantification. In this chapter, we describe various techniques to measure the oxidative stress by formation of oxidative by-products of lipids, proteins, and nucleic acids as well as the probing with various compounds. Methods including trapping, spectrofluorimetry, flow cytometry, ELISA, and antibody-based assays have been discussed. Understanding the tools and techniques to measure oxidative stress will help researchers to overcome various complications due to overproduction of reactive species (RS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valkoa M, Leibfritzb D, Moncol J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  Google Scholar 

  2. Li X, Fang P, Mai J et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19

    Article  PubMed Central  PubMed  Google Scholar 

  3. Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lobo V, Patil A, Phatak A et al (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Osakwe ON, Siegel A (2013) A novel standardized oxygen radical absorbance assay for evaluating antioxidant natural products. J AOAC Int 96:1365–1371

    Article  CAS  PubMed  Google Scholar 

  6. Dreive C, Rice-Evans C (2001) The mechanisms for nitration and nitrotyrosine formation in vitro and in vivo: impact of diet. Free Radic Res 35:215–231

    Article  Google Scholar 

  7. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:431–444

    Article  Google Scholar 

  8. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Ageing 2:219–236

    CAS  Google Scholar 

  9. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kaur H, Edmonds SE, Blake DR et al (1996) Hydroxyl radical generation by rheumatoid blood and knee joint synovial fluid. Ann Rheum Dis 55:915–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ingelman-Sundburg M, Kaur H, Terelius Y et al (1991) Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted. Biochem J 276:753–757

    Google Scholar 

  13. Li M, Carlson S, Kinzer JA et al (2003) HPLC and LC–MS studies of hydroxylation of phenylalanine as an assay for hydroxyl radicals generated from Udenfriend’s reagent. Biochem Biophys Res Commun 312:316–322

    Article  CAS  PubMed  Google Scholar 

  14. Kaur H, Halliwell B (1990) Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem Biol Interact 73:235–247

    Article  CAS  PubMed  Google Scholar 

  15. Halliwel B, Gutteridge JM (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  16. Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  CAS  PubMed  Google Scholar 

  17. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165

    Article  CAS  PubMed  Google Scholar 

  18. Bolt HM, Hengstler JG, Stewart J (2009) Analysis of reactive oxygen species. EXCLI J 8:241–245

    Google Scholar 

  19. Wang X, Fang H, Huang Z et al (2013) Imaging ROS signaling in cells and animals. J Mol Med 91:917–927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ruch W, Cooper PH, Baggiolini M et al (1983) Assay of H2O2 production by macrophages and neutrophils with Homovanillic acid and horseradish peroxidase. J Immunol Methods 63:347–357

    Article  CAS  PubMed  Google Scholar 

  21. Reszka KJ, Wagner BA et al (2005) Effects of peroxidase substrates on the Amplex red/peroxidase assay: antioxidant properties of anthracyclines. Anal Biochem 342:327–337

    Article  CAS  PubMed  Google Scholar 

  22. Wasowicz W, Neve J et al (1993) Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. Clin Chem 39:2522–2526

    CAS  PubMed  Google Scholar 

  23. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  24. Morrow JD, Awad JA, Kato T et al (1992) Formation of novel non-cyclooxygenase-derived prostanoids (F2-Isoprostanes) in carbon tetrachloride hepatotoxicity: an animal model of lipid peroxidation. J Clin Invest 90:2502–2507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Halliwell B (1999) Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res 443:37–52

    Article  CAS  PubMed  Google Scholar 

  26. Sung CC, Hsu YC (2013) Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev 301982:1–56

    Article  Google Scholar 

  27. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  28. Collins AR, Dušinská M et al (2001) Inter-individual differences in repair of base oxidation, measured in vitro with the comet assay. Mutagenesis 16:297–301

    Article  CAS  PubMed  Google Scholar 

  29. Adlam HA, Davies MJ (2003) Cell-mediated reduction of protein and peptide hydroperoxides to reactive free radicals. Free Radic Biol Med 34:44–55

    Article  Google Scholar 

  30. Petrat F, Pinduir S, Kirsch M et al (2003) NAD(P)H, a primary target of 1O2 in mitochondria of intact cells. J Biol Chem 278:3298–3307

    Article  CAS  PubMed  Google Scholar 

  31. Ohashi T, Mizutani A, Murakami A et al (2002) Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 511:21–27

    Article  CAS  PubMed  Google Scholar 

  32. Rota C, Fann YC, Mason RP (1999) Phenoxyl free radical formation during the oxidation of the fluorescent dye 20,70-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. J Biol Chem 274:28161–28168

    Article  CAS  PubMed  Google Scholar 

  33. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72

    Article  CAS  PubMed  Google Scholar 

  34. Buxser SE, Sawada G, Raub TJ (1999) Analytical and numerical techniques for evaluation of free radical damage in cultured cells using imaging cytometry and fluorescent indicators. Methods Enzymol 300:256–275

    Article  CAS  PubMed  Google Scholar 

  35. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

  36. Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25:826–831

    Article  CAS  PubMed  Google Scholar 

  37. Daiber A, Oelzeb M, August M et al (2004) Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012. Free Radic Res 38:259–269

    Article  CAS  PubMed  Google Scholar 

  38. Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O2. Free Radic Biol Med 15:447–451

    Article  CAS  PubMed  Google Scholar 

  39. Tarpey MM, White CR, Suarez E et al (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211

    Article  CAS  PubMed  Google Scholar 

  40. Liochev SI, Fridovich I (1997) Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli. Proc Natl Acad Sci U S A 94:2891–2896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ritov VB, Banni S, Yalowich JC et al (1996) Non-random peroxidation of different classes of membrane phospholipids in live cells detected by metabolically integrated cis-parinaric acid. Biochim Biophys Acta 1283:127–140

    Article  PubMed  Google Scholar 

  42. Milne GL, Musiek ES, Morrow JD (2005) F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10:S10–S23

    Article  CAS  PubMed  Google Scholar 

  43. Milne GL, Sanchez SC, Musiek ES et al (2007) Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protoc 2:221–226

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen F, Mikkelsen BB, Nielsen JB et al (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214

    CAS  PubMed  Google Scholar 

  45. Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol 1:145–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kawai Y, Furuhata A, Toyokuni S (2003) Formation of Acrolein-derived 2′-deoxyadenosine adduct in an iron-induced carcinogenesis model. J Biol Chem 278(50):50346–50354

    Article  CAS  PubMed  Google Scholar 

  47. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  CAS  PubMed  Google Scholar 

  48. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Valavanidis A, Vlachogianni T, Fiotakis CJ (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Env Sci Health Part C Env Carcinog Ecotoxicol Rev 27:120–139

    Google Scholar 

  50. Martinet W, Knaapen MVW, Guido RY et al (2002) Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106:927–932

    Google Scholar 

Download references

Acknowledgment

We acknowledge the Department of Biotechnology, DBT (Govt. of India) for financial support. This work was supported by a research grant awarded to Dr Vibha Rani by the Department of Biotechnology (DBT), Government of India (BT/PR3978/17/766/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Rani, V., Asthana, S., Vadhera, M., Yadav, U.C.S., Atale, N. (2015). Tools and Techniques to Measure Oxidative Stress. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_4

Download citation

Publish with us

Policies and ethics