Skip to main content

Oxidative Stress and Diabetes

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Increase in oxidative stress (OS) has been found to be linked with various disease conditions, including diabetes and post-diabetic complications. If there is any imbalance between the reactive oxygen species (ROS) and antioxidant species inside cells, ROS damage cellular functions directly or indirectly. Besides oxidizing the major biomolecules inside the cells, they also alter the cell signaling mechanism, cell permeability, basic genetic mechanism, etc. In case of diabetes, different types of stresses (emotional, physical, chemical, or infectious) can lead to damage to the pancreatic cells and may result in decreased production/secretion (by β-cells) or utilization (by adipocytes, skeletal muscles, hepatocytes, etc.) of insulin and so, can result into hyperglycemic conditions. For the cells, which are not insulin dependent for their glucose uptake and metabolism (retinal cells, nephrons, nerve cells, etc.), their intracellular glucose concentration rises, and as a result, an increase in oxidative stress occurs by various mechanisms. This further triggers the onset of post-diabetic complications. This chapter describes the causes and mechanisms for the onset of diabetes and post-diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan HZ, Chang D, Feng LG et al (2007) Oxidative damage to DNA and its relationship with diabetic complications. Biomed Environ Sci 20(2):160–163

    CAS  PubMed  Google Scholar 

  2. Chung SSM, Ho ECM, Lam KSL et al (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14(3):s233–s236

    Article  CAS  PubMed  Google Scholar 

  3. Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Article  CAS  PubMed  Google Scholar 

  4. Vincent AM, Russell JW, Low P et al (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25(4):612–628

    Article  CAS  PubMed  Google Scholar 

  5. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  6. Devasagayam TPA, Tilak JC, Boloor KK et al (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  PubMed  Google Scholar 

  7. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(1):S62–S69

    Article  PubMed Central  Google Scholar 

  8. Patti ME, Corvera S (2010) The role of mitochondria in pathogenesis of type 2 diabetes. Endocr Rev 31(3):364–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Daneman D (2006) Type 1 diabetes. Lancet 367(9513):847–858

    Article  CAS  PubMed  Google Scholar 

  10. Tersey SA, Nishiki Y, Templin AT et al (2012) Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61(4):818–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823

    Article  CAS  PubMed  Google Scholar 

  12. American Diabetes Association (2004) Hyperglycemic crises in diabetes. Diabetes Care 27(1):s94–s102

    Google Scholar 

  13. Said G (2007) Diabetic neuropathy – a review. Nat Clin Pract Neurol 3:331–340

    Article  PubMed  Google Scholar 

  14. Bandeira SM, Fonseca LJS, Guedes GS et al (2013) Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci 14(2):3265–3284

    Article  CAS  PubMed Central  Google Scholar 

  15. Mooy JM, Grootenhuis PA, Vries H et al (1996) Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia 39(3):298–305

    Article  CAS  PubMed  Google Scholar 

  16. Lloyd C, Smith J, Weinger K (2005) Stress and diabetes: a review of the links. Diabetes Spectr 18(2):121–127

    Article  Google Scholar 

  17. Willis T (1959) Pharmaceutical rational is or an excitation of the operations of medicines in human bodies. In: The works of Thomas Willis Dring. Harper, Leigh, London

    Google Scholar 

  18. Sepa A, Frodi A, Ludvigsson J (2005) Mothers’ experiences of serious life events increase the risk of diabetes-related autoimmunity in their children. Diabetes Care 28(10):2394–2399

    Article  PubMed  Google Scholar 

  19. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1(6):441–445

    CAS  PubMed  Google Scholar 

  20. Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:1–30

    Article  CAS  Google Scholar 

  21. Padgett LE, Broniowska KA, Hansen PA et al (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281(1):16–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Maechler P, Jornot L, Wollheim CB (1999) Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 274:27905–27913

    Article  CAS  PubMed  Google Scholar 

  23. Song F, Jia W, Yao Y et al (2007) Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed type 2 diabetes. Clin Sci (Lond) 112(12):599–606

    Article  CAS  Google Scholar 

  24. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  25. Naudi A, Jove M, Ayala V et al (2012) Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diab Res 2012:1–14

    Article  CAS  Google Scholar 

  26. Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25(3–4):275–281

    Article  CAS  PubMed  Google Scholar 

  27. Dean RT, Fu S, Stocker R et al (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(1):1–18

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Yakes FM, Houten BV (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94(2):514–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Maechler P, Kennedy ED, Pozzan T et al (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16(13):3833–3841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ames BN, Shigenaga MK, Hagen TM (1993) Review: oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–7922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Evans JL, Goldfine ID, Maddux BA et al (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52(1):1–8

    Article  CAS  PubMed  Google Scholar 

  32. Nishida T, Nakagawa S, Manab¢ R (1984) Superoxide dismutase activity in diabetic rat retina. Jpn J Ophthalmol 28:377–382

    CAS  PubMed  Google Scholar 

  33. Uttara B, Singh AV, Zamboni P et al (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hagglof B, Marklund SL, Holmgren G (1983) CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase in lymphocytes and erythrocytes in insulin-dependent diabetic children. Acta Endocrinol 102:235–239

    CAS  PubMed  Google Scholar 

  35. Cadet J, Loft S, Olinski R et al (2012) Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radical Res 46(4):367–381

    Article  CAS  Google Scholar 

  36. Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(2):S97–S107

    Article  CAS  PubMed  Google Scholar 

  37. Newsholme P, Haber EP, Hirabara SM et al (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583(1):9–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chambers KT, Unverferth JA, Weber SM et al (2008) The role of nitric oxide and the unfolded protein response in cytokine-induced beta-cell death. Diabetes 57:124–132

    Article  CAS  PubMed  Google Scholar 

  39. Oyadomari S, Takeda K, Takiguchi M et al (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A 98:10845–10850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461

    Article  CAS  PubMed  Google Scholar 

  41. Kulkarni RN, Roper MG, Dahlgren G et al (2004) Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco (endo) plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3. Diabetes 53:1517–1525

    Article  CAS  PubMed  Google Scholar 

  42. Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14

    Article  CAS  PubMed  Google Scholar 

  43. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  44. Meglasson MD, Matschinsky FM (1986) Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 2:163–214

    Article  CAS  PubMed  Google Scholar 

  45. Grodsky GM (2000) Kinetics of insulin secretion: underlying metabolic events in diabetes mellitus. In: Le Roith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  46. Henry WL (1962) Perspectives in diabetes. J Natl Med Assoc 54(4):476–478

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Brown GC, Borutaite V (1999) Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 66:17–25

    CAS  PubMed  Google Scholar 

  48. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification: the potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Paschen W, Mengesdorf T, Althausen S et al (2001) Peroxidative stress selectively down-regulates the neuronal stress response activated under conditions of endoplasmic reticulum dysfunction. J Neurochem 76:1916–1924

    Article  CAS  PubMed  Google Scholar 

  50. Kakimoto M, Inoguchi T, Sonta T et al (2002) Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes 51:1588–1595

    Article  CAS  PubMed  Google Scholar 

  51. Paolisso G, Giugliano D (1996) Oxidative stress and insulin action. Is there a relationship? Diabetologia 39:357–363

    Article  CAS  PubMed  Google Scholar 

  52. Wojtczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57

    Article  CAS  PubMed  Google Scholar 

  53. Bakker SJ, IJzerman RG, Teerlink T (2000) Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 148:17–21

    Article  CAS  PubMed  Google Scholar 

  54. Toborek M, Hennig B (1994) Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells. Am J Clin Nutr 59:60–65

    CAS  PubMed  Google Scholar 

  55. Hennig B, Meerarani P, Ramadass P et al (2000) Fatty acid-mediated activation of vascular endothelial cells. Metabolism 49:1006–1013

    Article  CAS  PubMed  Google Scholar 

  56. McGarry JD (2002) Banting Lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  PubMed  Google Scholar 

  57. Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10

    Article  CAS  PubMed  Google Scholar 

  58. Poitout V, Robertson RP (2002) Mini review: secondary beta-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339–342

    CAS  PubMed  Google Scholar 

  59. Harmon JS, Gleason CE, Tanaka Y et al (2001) Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes 50:2481–2486

    Article  CAS  PubMed  Google Scholar 

  60. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111–112:1–14

    Article  PubMed  Google Scholar 

  61. Iwata-Ichikawa E, Kondo Y, Miyazaki I et al (2002) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neuro Chem 72:2334–2344

    Google Scholar 

  62. Keelan J, Allen NJ, Antcliffe D et al (2001) Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J Neurosci Res 66:873–884

    Article  CAS  PubMed  Google Scholar 

  63. Lowndes HE, Beiswanger CM, Philbert MA et al (1994) Substrates for neural metabolism of xenobiotics in adult and developing brain. Neurotoxicology 15:61–73

    CAS  PubMed  Google Scholar 

  64. Shan X, Jones DP, Hashmi M et al (1993) Selective depletion of mitochondrial glutathione concentrations by (R, S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. Chem Res Toxicol 6:75–81

    Article  CAS  PubMed  Google Scholar 

  65. Li L, Shen YM, Yang XS et al (2002) Effects of spiramine T on antioxidant enzymatic activities and nitric oxide production in cerebral ischemia-reperfusion gerbils. Brain Res 944:205–209

    Article  CAS  PubMed  Google Scholar 

  66. Kobayashi MS, Han D, Packer L (2000) Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity. Free Radic Res 32:115–124

    Article  CAS  PubMed  Google Scholar 

  67. Xie C, Lovell MA, Xiong S et al (2001) Expression of glutathione-S- transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Radic Biol Med 31:73–81

    Article  CAS  PubMed  Google Scholar 

  68. Evans JL, Goldfine ID, Maddux BA et al (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    Article  CAS  PubMed  Google Scholar 

  69. Pop‑Busui R (2010) DCCT and EDIC studies in type 1 diabetes: lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr Diab Rep 10:276–282

    Article  Google Scholar 

  70. Lee AYW, Chung SSM (1999) Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13:23–30

    CAS  PubMed  Google Scholar 

  71. Boucek P (2006) Advanced diabetic neuropathy: a point of no return? Rev Diabet Stud 3(3):143–150

    Article  PubMed Central  PubMed  Google Scholar 

  72. Marshall S, Garvey WT, Traxinger RR (1991) New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids. FASEB J 5:3031–3036

    CAS  PubMed  Google Scholar 

  73. Callaghan BC, Cheng HT, Stables CL et al (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11:521–534

    Article  PubMed  Google Scholar 

  74. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Bierhaus A, Schiekofer S, Schwaninger M et al (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes 50:2792–2808

    Article  CAS  PubMed  Google Scholar 

  76. Mohamed AK, Bierhaus A, Schiekofer S et al (1999) The role of oxidative stress and NF-κB activation in late diabetic complications. Biofactors 10:157–167

    Article  CAS  PubMed  Google Scholar 

  77. Griffin ME, Marcucci MJ, Cline GW et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  CAS  PubMed  Google Scholar 

  78. Coudronniere N, Villalba M, Englund N et al (2000) NF-kappa B activation induced by T cell receptor/CD28 co-stimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci U S A 97:3394–3399

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hosseini A, Abdollahi M (2013) Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid Med Cell Longev 168039:1–15

    Article  CAS  Google Scholar 

  80. Zheng H, Whitman SA, Wu W (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 7:719–731

    Article  CAS  Google Scholar 

  82. Ho FM, Liu SH, Liau CS et al (2000) High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101:2618–2624

    Article  CAS  PubMed  Google Scholar 

  83. Natarajan R, Scott S, Bai W et al (1999) Angiotensin II signaling in vascular smooth muscle cells under high glucose conditions. Hypertension 33:378–384

    Article  CAS  PubMed  Google Scholar 

  84. Purves T, Middlemas A, Agthong S et al (2001) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J 15:2508–2514

    Article  CAS  PubMed  Google Scholar 

  85. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Cameron NE, Cotter MA (2002) Effects of protein kinase C beta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev 18:315–323

    Article  CAS  PubMed  Google Scholar 

  87. Cotter MA, Jack AM, Cameron NE (2002) Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 103:311–321

    CAS  Google Scholar 

  88. Rajbhandari SM, Piya MK (2005) A brief review on the pathogenesis of human diabetic neuropathy: observations and postulations. Int J Diab Metab 13:135–140

    Google Scholar 

  89. Busui RP, Marinescu V, Huysen VC (2002) Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Diabetes 51:2619–2628

    Article  Google Scholar 

  90. Robertson RP, Harmon JS, Tanaka Y et al (2000) Glucose toxicity of the β-cell: cellular and molecular mechanisms. In: Le Roith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  91. Boden G, Ruiz J, Kim CJ et al (1996) Effects of prolonged glucose infusion on insulin secretion, clearance, and action in normal subjects. Am J Physiol 270:E251–E258

    CAS  PubMed  Google Scholar 

  92. Robertson RP, Zhang HJ, Pyzdrowski KL et al (1992) Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest 90:320–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Poitout V, Olson LK, Robertson RP (1996) Chronic exposure of beta TC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J Clin Invest 97:1041–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Tanaka Y, Gleason CE, Tran PO et al (1999) Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A 96:10857–10862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Butterfield DA, Koppal T, Howard B et al (1998) Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl- α -phenylnitrone and vitamin E. Ann N Y Acad Sci 854:448–462

    Article  CAS  PubMed  Google Scholar 

  96. Deng G, Su JH, Ivins KJ et al (1999) Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp Neurol 159:309–318

    Article  CAS  PubMed  Google Scholar 

  97. Aksenova MV, Aksenov MY, Payne RM et al (1999) Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord 10:158–165

    Article  CAS  PubMed  Google Scholar 

  98. Kobori H, Nangaku M, Navar LG et al (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59(3):251–287

    Article  CAS  PubMed  Google Scholar 

  99. Jerums G, Panagiotopoulos S, Forbes J et al (2003) Evolving concepts in advanced glycation, diabetic nephropathy, and diabetic vascular disease. Arch Biochem Biophys 419:55–62

    Article  CAS  PubMed  Google Scholar 

  100. Youssef S, Nguyen DT, Soulis T et al (1999) Aminoguanidine ameliorates changes in the IGF system in experimental diabetic nephropathy. Kidney Int 55:907–916

    Article  CAS  PubMed  Google Scholar 

  101. McRobert EA, Gallicchio M, Jerums G et al (2003) The Amino-terminal domains of the Ezrin, Radixin, and Moesin (ERM) proteins bind advanced glycation end products, an interaction that may play a role in the development of diabetic complications. J Biol Chem 278:25783–25789

    Article  CAS  PubMed  Google Scholar 

  102. Yamamoto Y, Kato I, Doi T et al (2001) Development and prevention of advanced diabetic nephropathy in RAGE-over expressing mice. J Clin Invest 108:261–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Gilbert C, Ackland P, Resnikoff S, Gilbert S et al (2007) International. Vision 2020 The right to sight, global initiative for the elimination of avoidable blindness. Action plan 2006–2011 World Health Organization

    Google Scholar 

  104. Indo HP, Davidson M, Yen HC et al (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118

    Article  CAS  PubMed  Google Scholar 

  105. Madsen-Bouterse SA, Zhong Q, Mohammad G et al (2010) Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic Res 44(3):313–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Hammes HP, Feng P, Fister et al (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60(1):9–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  108. Simionescu M, Simionescu N (2006) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27(2):266–274

    Article  PubMed  CAS  Google Scholar 

  109. Steinberg HO, Baron AD (2002) Vascular function, insulin resistance and fatty acids. Diabetologia 45:623–634

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Rachana, Thakur, S., Basu, S. (2015). Oxidative Stress and Diabetes. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_16

Download citation

Publish with us

Policies and ethics